Гёдель, Эшер, Бах: эта бесконечная гирлянда | страница 41



теории чисел.

После того, как Гёдель изобрел эту кодирующую схему, ему пришлось разработать в деталях способ перевода парадокса Эпименида на формальный язык теории чисел. Конечный результат «пересадки» Эпименида на формальную почву звучит так: «Это суждение теории чисел не имеет доказательства» (вместо «Это суждение теории чисел ложно»). Эта формулировка может создать немалую путаницу. так как «доказательство» для многих является весьма приблизительным понятием. В действительности, труды Геделя были лишь частью долгих поисков, предпринятых математиками в надежде выяснить, что же такое доказательства. Необходимо помнить тот факт, что доказательства являются таковыми только внутри жестких систем теорем. В Гёделевской работе такой жесткой системой, к которой относится слово «доказательство», является огромный труд Бертрана Рассела и Альфреда Норта Уайтхеда «Principia Mathematical» («Основания математики»), опубликованный между 1910 и 1913 годами. Следовательно, Гёделево высказывание Г должно бы звучать более правильно как:

Это суждение теории чисел не имеет доказательств в системе «Оснований математики».

Заметим, между прочим, что Гёделево высказывание Г само по себе не является теоремой Гёделя, так же как высказывание Эпименида не является замечанием «Высказывание Эпименида — парадокс». Теперь мы можем установить, какой эффект произвело открытие Г. В то время как высказывание Эпименида создает парадокс, потому что оно не является ни истинным, ни ложным, Гёделево высказывание Г — истинно, хотя и не доказуемо в системе «Оснований математики». Из этого следует замечательный вывод: система «Оснований математики» неполна, так как существуют истинные суждения теории чисел, не доказуемые методами самой теории (эти методы доказательства оказываются слишком «слабыми».)

«Основания математики» явились первой, но далеко не последней жертвой удара. Выражение «и родственные системы» в заглавии Гёделевой статьи говорит о многом. Если бы результат, полученный Гёделем, указывал бы только на дефект в работе Рассела и Уайтхеда, другие математики могли бы попытаться исправить ошибки в «Основаниях математики» и «перехитрить» теорему Гёделя. Однако это оказалось невозможным: теорема Гёделя была приложима ко всем аксиоматическим системам, ставившим своей целью то же, что и система Рассела и Уайтхеда. Для различных систем подходил один и тот же основной трюк. Короче, Гёдель показал, что понятие «доказуемости» уже, слабее понятия истинности вне зависимости от того, какую аксиоматическую систему мы выбираем.