Учебное пособие по курсу «Нейроинформатика» | страница 68



Контрастирование и нормализация сети

В последние годы широкое распространение получили различные методы контрастирования или скелетонизации нейронных сетей. В ходе процедуры контрастирования достигается высокая степень разреженности синаптической карты нейронной сети, так как большинство связей получают нулевые веса (см. например [47, 100, 303, 304]).

Очевидно, что при такой степени разреженности ненулевых параметров проводить вычисления так, как будто структура сети не изменилась, неэффективно. Возникает потребность в процедуре нормализации сети, то есть фактического удаления нулевых связей из сети, а не только из обучения. Процедура нормализации состоит из двух этапов:

1. Из сети удаляются все связи, имеющие нулевые веса и исключенные из обучения.

2. Из сети удаляются все подсети, выходные сигналы которых не используются другими подсетями в качестве входных сигналов и не являются выходными сигналами сети в целом.

В ходе нормализации возникает одна трудность: если при описании нейронной сети все нейроны одинаковы, и можно описать нейрон один раз, то после удаления отконтрастированных связей нейроны обычно имеют различную структуру. Компонент сеть должен отслеживать ситуации, когда два блока исходно одного и того же типа уже не могут быть представлены в виде этого блока с различными параметрами. В этих случаях компонент сеть порождает новый тип блока. Правила порождения имен блоков приведены в описании выполнения запроса на нормализацию сети.

Примеры сетей и алгоритмов их обучения

В этом разделе намеренно допущено отступление от общей методики — не смешивать разные компоненты. Это сделано для облегчения демонстрации построения нейронных сетей обратного распространения, позволяющих реализовать на них большинство известных алгоритмов обучения нейронных сетей.

Сети Хопфилда

Классическая сеть Хопфилда [312], функционирующая в дискретном времени, строится следующим образом. Пусть {e>i} — набор эталонных образов (i=1, …, m). Каждый образ, включая и эталоны, имеет вид n-мерного вектора с координатами, равными нулю или единице. При предъявлении на вход сети образа x сеть вычисляет образ, наиболее похожий на x. В качестве меры близости образов выберем скалярное произведение соответствующих векторов. Вычисления проводятся по следующей формуле:

Эта процедура выполняется до тех пор, пока после очередной итерации не окажется, что x=x'. Вектор x, полученный в ходе последней итерации, считается ответом. Для нейросетевой реализации формула работы сети переписывается в следующем виде: