Учебное пособие по курсу «Нейроинформатика» | страница 60



Необходимо отметить еще одну разновидность сумматоров, полезную при работе по конструированию сети — неоднородные сумматоры. Неоднородный сумматор отличается от однородного наличием еще одного входного сигнала, равного единице. На рис. 4 г приведены схема и обозначения для неоднородного адаптивного сумматора. В табл. 1 приведены значения, вычисляемые однородными и соответствующими им неоднородными сумматорами.


Таблица 1. Однородные и неоднородные сумматоры

Функционирование сети

Рис. 5 Схема функционирования сети


Прежде всего, необходимо разделить процессы обучения нейронной сети и использования обученной сети. При использовании обученной сети происходит только решение сетью определенной задачи. При этом синаптическая карта сети остается неизменной. Работу сети при решении задачи будем далее называть прямым функционированием.

При обучении нейронных сетей методом обратного распространения ошибки нейронная сеть (и каждый составляющий ее элемент) должна уметь выполнять обратное функционирование. Во второй части этой главы будет показано, что обратное функционирование позволяет обучать также и нейросети, традиционно считающиеся не обучаемыми, а формируемыми (например, сети Хопфилда [312]). Обратным функционированиемназывается процесс работы сети, когда на вход двойственной сети подаются определенные сигналы, которые далее распространяются по связям двойственной сети. При прохождении сигналов обратного функционирования через элемент, двойственный элементу с обучаемыми параметрами, вычисляются поправки к параметрам этого элемента. Если на вход сети, двойственной к сети с непрерывными элементами, подается производная некоторой функции F от выходных сигналов сети, то вычисляемые сетью поправки должны быть элементами градиента функции F по обучаемым параметрам сети. Двойственная сеть строится так, чтобы удовлетворять этому требованию.

Методы построения двойственных сетей

Пусть задана нейронная сеть, вычисляющая некоторую функцию (рис. 5а). Необходимо построить двойственную к ней сеть, вычисляющую градиент некоторой функции H от выходных сигналов сети. В книге А.Н. Горбаня «Обучение нейронных сетей» [65] предложен метод построения сети, двойственной к данной. Пример сети, построенной по методу А.Н. Горбаня, приведен на рис. 5б. Для работы такой сети необходимо, обеспечение работы элементов в трех режимах. Первый режим — обычное прямое функционирование (рис. 5а). Второй режим — нагруженное прямое функционирование (рис. 5б, верхняя цепочка). Третий режим — обратное функционирование.