Учебное пособие по курсу «Нейроинформатика» | страница 38
Заметим, что если привычный для человека способ представления входных данных непригоден для нейронной сети, то и формат ответов нейронной сети часто малопригоден для человека. Необходимо интерпретировать ответы нейронной сети. Интерпретация зависит от вида ответа. Так, если ответом нейронной сети является действительное число, то его, как правило, приходится масштабировать и сдвигать для попадания в нужный диапазон ответов. Если сеть используется как классификатор, то выбор интерпретаторов еще шире. Большое разнообразие интерпретаторов при невозможности решить раз и навсегда вопрос о преимуществах одного из них над другими приводит к необходимости выделения интерпретатора ответа нейронной сети в отдельный компонент нейрокомпьютера.
С интерпретатором ответа тесно связан еще один обязательный компонент нейрокомпьютера — оценка. Невнимание к этому компоненту вызвано практикой рассматривать метод обратного распространения ошибки в виде алгоритма. Доминирование такой точки зрения привело к тому, что, судя по публикациям, большинство исследователей даже не подозревает о том, что «уклонение от правильного ответа», подаваемое на вход сети при обратном функционировании, есть ни что иное, как производная функции оценки по выходному сигналу сети (если функция оценки является суммой квадратов уклонений). Возможно (и иногда очень полезно) конструировать другие оценки (см. главу «Оценка и интерпретатор ответа»). Нашей группой в ходе численных экспериментов было выяснено, что для обучения сетей-классификаторов функция оценки вида суммы квадратов, пожалуй, наиболее плоха. Использование альтернативных функций оценки позволяет в несколько раз ускорить обучение нейронной сети.