Учебное пособие по курсу «Нейроинформатика» | страница 27
Если число линейно независимых эталонов меньше n, то сеть преобразует поступающий образ, отфильтровывая помехи, ортогональные всем эталонам.
Отметим, что результаты работы сетей (3) и (6) эквивалентны, если все эталоны попарно ортогональны.
Остановимся несколько подробнее на алгоритме вычисления дуального множества векторов. Обозначим через Γ({x>i}) матрицу Грама множества векторов {x>i}.
Элементы матрицы Грама имеют вид γ>ij = (x>i, x>j) (ij-ый элемент матрицы Грама равен скалярному произведению i-го эталона на j-ый). Известно, что векторы дуального множества можно записать в следующем виде:
где γ>ij>-1 — элемент матрицы Γ>-1({x>i}). Поскольку определитель матрицы Грама равен нулю, если множество векторов линейно зависимо, то матрица, обратная к матрице Грама, а следовательно и дуальное множество векторов существует только тогда, когда множество эталонов линейно независимо.
Для работ сети (6) необходимо хранить эталоны и матрицу Γ>-1({x>i}).
Рассмотрим процедуру добавления нового эталона к сети (6). Эта операция часто называется дообучением сети. Важным критерием оценки алгоритма формирования сети является соотношение вычислительных затрат на обучение и дообучение. Затраты на дообучение не должны зависеть от числа освоенных ранее эталонов.
Для сетей Хопфилда это, очевидно, выполняется — добавление еще одного эталона сводится к прибавлению к функции H одного слагаемого (x, x>m>+1)², а модификация связей в сети — состоит в прибавлении к весу ij-й связи числа x>i>m>+1x>j>m>+1 — всего n² операций.
Для рассматриваемых сетей с ортогональным проектированием также возможно простое дообучение. На первый взгляд, это может показаться странным — если добавляемый эталон линейно независим от старых эталонов, то, вообще говоря, необходимо пересчитать матрицу Грама и обратить ее. Однако симметричность матрицы Грама позволяет не производить заново процедуру обращения всей матрицы. Действительно, обозначим через