Как постепенно дошли люди до настоящей арифметики | страница 51
9. Девятымъ пріемомъ умноженіе производится тоже сначала на десятки, а потомъ на единицы; если бы были сотни, то, конечно, сперва на сотни. Умноживши на десятки, произведеніе подписываютъ точно такъ же, какъ это сдѣлали бы и мы, но съ единицами идегь иначе.
Когда мы умножимъ 456 на 7, то получимъ 3192. Изъ нихъ 319 десятковъ помѣщаемъ внизу, во второй строкѣ, подъ тѣми цифрами, какія соотвѣтствуютъ имъ по значенію, а 2 единицы вверху, рядомъ съ 4 десятками, прямо подъ единицами множителя, въ виду того, что это мѣсто ничѣмъ не занято. Подобная система писать цифры какъ можно выше, на свободныхъ мѣстахъ, проявляется у многихъ авторовъ, какъ это мы увидимъ впослѣдствіи; порядокъ этотъ довольно безвредный, потому что, гдѣ бы ни писать, лишь бы написать вѣрно подъ своимъ разрядомъ: но онъ можетъ оказаться и неудобнымъ тогда, когда счетчикъ собьется: тогда очень трудно разобраться въ рядѣ цифръ, найти, какая изъ нихъ принадлежитъ къ какому произведению, и исправить ошибку. Этотъ девятый способъ приписывается Апіану (XVI в.).
10. Въ предыдущихъ 4 способахъ дѣйствіе начиналось съ высшихъ разрядовъ множителя, и въ этомъ только, главнымъ образомъ, и заключалась ихъ особенность; цифры подписывались почти такъ же, какъ у насъ, и вообще большого измѣненія противъ нормальнаго порядка не было. Но теперь мы перейдемъ къ болѣе грубымъ и старымъ пріемамъ, въ которыхъ уклоненій отъ нашего уже гораздо больше. Отличіемъ ихъ является полная механичность, безъ всякаго вычисленія въ умѣ; составители зтихъ пріемовъ держатся слишкомъ невысокаго мнѣнія о понятливости и сообразительности своихъ учениковъ, ничего не довѣряютъ устному счету и рекомендуютъ все записывать, даже до мелочей, и притомъ по опредѣленнымъ, точно установленнымъ формамъ. Напримѣръ, когда умножаются десятки, то къ ихъ произведенію нельзя прямо прибавить тѣхъ десятковъ, которые получились отъ единицъ, а надо написать отдѣльно и сложить ихъ въ самомъ концѣ, когда всѣ мелкія умноженія будутъ выполнены. Эти тяжеловѣсные, громоздкіе способы въ настоящее время всѣми оставлены, и никому въ голову не придетъ ими воспользоваться, между тѣмъ, въ XV–XVII столѣтіи, въ эпоху наиболѣе усиленной работы надъ ариѳметикой, когда индусская система проникла и въ народъ, и въ школу, эти способы были ходячими и общепринятыми. Сейчасъ они не имѣютъ никакой цѣны, потому что требуютъ много лишняго письма и лишняго времени для вычисленій, мы же ихъ приводимъ съ тою цѣлью, чтобъ показать, изъ какихъ первоначальныхъ и несовершенныхъ формъ образовались наши болѣе совершенныя.