История инженерной деятельности | страница 211
Наряду с указанными выше проблемами возникают следующие четыре группы проблем:
1. Применение молекулярной нанотехнологии в военных целях.
2. «Поломка» наносистем или даже выход их из-под контроля.
3. Проблемы, связанные с этификацией (облагораживанием) окружающей среды.
4. Проблемы бессмертия человека.
Следует заметить, что уже с 1994 года практически начинается применение нанотехнологических методов в промышленности.
Многие из перспективных направлений в материаловедении, нанотехнологии, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры. Что же это такое?
Углеродные каркасные структуры – это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры – это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул – это их каркасная форма: они выглядят как замкнутые, полые внутри «оболочки». Самая знаменитая из углеродных каркасных структур – это фуллерен С>60, абсолютно неожиданное открытие которого в 1985 году вызвало целый бум исследований в этой области (Нобелевская премия по химии за 1996 год была присуждена именно первооткрывателям фуллеренов Роберту Керлу, Гарольду Крото и Ричарду Смалли). В конце 80-х, начале 90-х годов, после того как была разработана методика получения фуллеренов в макроскопических количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов: начиная от С>20 (минимально возможного из фуллеренов) и до С>70, С>82, С>96 и выше.
Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году, опять-таки совершенно неожиданно, были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок. Визуально структуру таких нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и «склеиваем» ее в цилиндр (предостережение: такое сворачивание графитовой плоскости – это лишь способ представить себе структуру нанотрубки; реально нанотрубки растут совсем по-другому). Казалось бы, что проще – берешь графитовую плоскость и сворачиваешь в цилиндр! – однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал! Так что ученым оставалось только изучать их – и удивляться!