Чаплыгин | страница 13
— Механика должна равноправно опираться на анализ и геометрию, заимствуя от них то, что наиболее подходит к существу задачи… — говорил он. — Но последняя обработка решений задачи будет принадлежать геометрии. Геометр всегда будет являться художником, создающим окончательный образ построенного здания.
В заключение докладчик высоко оценивал геометрическое толкование для преподавания теоретической механики.
— Конечно, геометрическое толкование должно быть ясно и просто и должно всегда близко прилегать к рассматриваемой задаче, стремясь к изучению вещей самих в себе. Можно говорить, что математическая истина только тогда должна считаться вполне обработанной, когда она может быть объяснена всякому из публики, желающему ее усвоить. Я думаю, что если возможно приближение к этому идеалу, то только со стороны геометрического толкования или моделирования. Моделирование стоит рядом с геометрическим толкованием и представляет еще высшую степень наглядности.
Как бы вызывая присутствовавших в аудитории аналитиков на спор, Николай Егорович продолжал дальше:
— Прежде думали, что прибегать к моделям следует только при элементарном преподавании и что высшие науки, предлагаемые изучающим высшего развития, не нуждаются в этой степени наглядности. Но эта мысль едва ли справедлива, так как высшие науки часто являются очень сложными и с накоплением научного материала год от году усложняются. Модель, удачно построенная, является хорошим подспорьем даже и для разъяснения теоретического вопроса. Томсон сказал, что явление только тогда может считаться вполне понятным, когда мы можем представить его на модели…
Авторитетное имя английского ученого напомнило Чаплыгину заключение Максвелла о неодинаковости мышления у разных людей. Сергей Алексеевич обладал чисто зрительной памятью, и раз вычитанные строки мгновенно предстали перед ним: «Для того чтобы удовлетворить людей этих различных типов, научная истина должна была бы излагаться в различных формах и считаться одинаково научной, будет ли она выражена в полнокровной форме или же в скудном и бледном символическом выражении».
Сам Чаплыгин по строению своего ума не нуждался в геометрическом толковании интересовавших его задач. Он видел в таком толковании только иллюстрации к аналитическим решениям и охотно прибегал к ним, следуя советам учителя. Геометрический метод присутствовал и в увенчанном премией Брашмана сочинении Чаплыгина «О некоторых случаях движения твердого тела в жидкости».