История физики | страница 90



кроме того, он допустил, что "каждый электрон освобождается при посредстве одного кванта. Здесь непосредственно происходит бомбардировка облучаемых тел квантами света. Если hменьше, чем работа, необходимая для освобождения электрона (работа выхода), то эффект не наступает; это значит, что со стороны больших длин волн существует предел, который зависит от облучаемого тела. Но если v выше этого предела, то энергия освобожденного электрона равна энергии hфотона, уменьшенной на работу выхода электрона. Теория Эйнштейна так точно описала это явление, что Р. А. Милликен смог в 1916 г. из наблюдений частоты света и энергии фотоэлектронов дать верное определение значения h.

Исходя из тех же соображений, Эйнштейн установил в 1912 г. основной фотохимический закон, согласно


которому при всякой фотохимической реакции происходит сначала поглощение кванта света, а затем вызванное им превращение в одном атоме или молекуле. Этот закон также был признан правильным, после того как многие исследователи, особенно Эмиль Варбург (1846-1931) и Джемс Франк, благодаря большому трудолюбию и проницательности ясно установили побочные реакции и прочие усложнения, часто присоединявшиеся к описанному элементарному акту поглощения фотона, в силу чего число превращенных молекул становилось иногда меньше, а иногда в тысячи раз больше, чем это соответствует закону.

Явление, обратное фотоэлектрическому эффекту, заключается в возникновении излучения из-за захвата электрона атомом или молекулой. Если этот захват происходит в одном элементарном акте, то возникает фотон, энергия hv которого равна кинетической энергии электрона (сложенной с величиной соответствующей работы выхода). При возникновении рентгеновских лучей в трубке Рентгена происходит как раз торможение электронов на антикатоде во многих элементарных актах. Но наибольшая возможная частота (или наименьшая возможная длина волны) всегда соответствует кинетической энергии электронов. Это утверждает открытый в 1915 г. В. Дюане и Ф. Л. Гунтом закон, определяющий границу спектра торможения со стороны коротких длин волн. В 1912 г. при открытии интерференции рентгеновских лучей этот закон еще не был известен, поэтому М. Лауэ должен был, согласно своей теории, ожидать гораздо больше точек интерференции, чем фактически оказалось, и ошибочно приписал их отсутствие селективным свойствам атомов кристалла. Согласно закону Дюане-Гунта фактически не оказалось волн короткой длины, которые должны были бы появиться в недосчитанных точках.