История физики | страница 63



Все процессы разделяются на два класса: к одному относятся те, в которых энтропия увеличивается; если бы такие процессы можно было прямо или косвенно обратить, то энтропия уменьшалась бы, что невозможно. Следовательно, они необратимы. Ко второму классу относятся такие процессы, при которых энтропия остается постоянной; они обратимы. В 1834 г. Бе-нуа Поль Эмиль Клапейрон (1799-1864) ввел в физическую теорию обратимый круговой процесс, который приблизительно осуществляется в паровой машине. Он состоит из отдельных обратимых явлений и в нем имеются две изотермические и две адиабатические ветви (последние происходят без получения или отнятия тепла). Прибавленные или отнятые количества тепла на изотермических ветвях зависят только от температур, при которых происходят эти процессы. Этот факт используется рассмотренным в гл. 7 термодинамическим определением температуры. Разность обоих количеств теплоты (положительная или отрицательная) при обратимом круговом процессе зависит только от обеих температур. Коэффициент полезного действия такой машины зависит от указанной разности температур. При необратимых круговых процессах коэффициент полезного действия ceteris paribus *) меньше.

*) При прочих равных условиях.


Таковы некоторые ведущие идеи из начал термодинамики.

Факт сосуществования таких двух независимых друг от друга функций состояния, как энергия и энтропия, позволяет с помощью математического анализа сделать ряд высказываний о термическом поведении тел. Еще более важным оказывается следствие, согласно которому любое равновесие в замкнутой системе должно соответствовать максимуму энтропии. Если 'можно задать функцию энтропии для различных тел, то можно выразить равновесие между ними. Так, Клау-зиус уже дал теорию равновесия для различных агрегатных состояний одного и того же вещества. Термохимическая теория равновесия внесла порядок в почти необозримое разнообразие химических реакций после того, как в 1873 г. Август Хорстман (1842-1929) применил оба основных закона к частному случаю этого рода. Якоб Гендрик Вант-Гофф (1852-1911), Джозайя Уиллард Гиббс (1839-1903) и М. Планк особенно много сделали в этой области; в 1882 г. в эту область включился также Г. Гельмгольц. Удалось связать старое, прежде неясное понятие химического сродства с различиями энергии и энтропии. При этом обнаружилось, что химическое сродство зависит не только от природы реагирующих веществ, но также от температуры и давления. Термодинамика охватила теорию упругости и учение об электричестве и магнетизме, где в большинстве случаев соответствующие явления связаны также с тепловыми эффектами. Короче говоря, не существует, собственно, ни одной области физики, к которой бы термодинамика не имела отношения. Если от нее отвлекаются, то это уже означает идеализирование.