История физики | страница 55



Совершенно другим и совсем не простым вопросом является вопрос о практическом применении термодинамической температурной шкалы. Использованный для ее определения круговой процесс есть мысленный опыт, который нельзя выполнить ни в одном случае с полнейшей точностью. Но все же развитие термодинамики дало средства и пути для перехода от других шкал к термодинамической. Мы не будем здесь заниматься этим, но только укажем, что при измерении высоких температур с большим успехом используют тепловое излучение, тем более, что оно связано с температурой источника излучения простыми и теоретически хорошо обоснованными законами (гл. 13). Таким путем приходят также к определению температур звезд, что имеет величайшее значение для астрономии.


Старейшими средствами понижения температуры были охлаждающие смеси и охлаждение быстро испаряющихся жидкостей. Когда такого рода возможности были исчерпаны, их место постепенно заняло открытое в 1852 г. Джемсом Прескотом Джоулем (1818-1889) и Вильямом Томсоном (позднее лорд Кельвин, 1824- 1907) и по их имени названное явление. Предварительно достаточно охлажденный газ при выпускании через насадку переходит из области более высокого давления в область более низкого давления и при этом происходит небольшое охлаждение. Отсюда постепенно развилась в XIX столетии холодильная техника, для промышленного развития которой особенно много сделал Карл Линде (1842-1934). Характерной частью холодильной машины является «противоток», в котором уже испытавшие расширение и охлаждение части газа охлаждают те части газа, которые еще не испытывали расширения. Можно этот процесс продолжать до тех пор, пока будет достигнута критическая температура и газ будет частично превращен в жидкость. Таким способом в 1883 г. Зигмунд Флорентий Вроблевский (1845-1888) и Карл Станислав Ольшевский (1846-1915) достигли ожижения в значительных количествах «постоянных» газов - кислорода и азота; в 1898 г. Джемс Дьюар (1842-1923) произвел ожижение водорода, а в 1908 г. Камерлинг-Оннес (1853-1926) осуществил чреватое большими последствиями ожижение гелия (гл. 5). Тем самым был превращен в жидкость последний «постоянный» газ.

Если заставить кипеть одну из этих жидкостей под сниженным давлением, то можно получить температуры значительно более низкие, чем температуры ожижения. У водорода приходят приблизительно к 10°, у гелия к 0,7° абсолютной температуры.

Используя понятие температуры и представление о неразрушимости количества тепла, Жан Батист Био (1774-1862) в 1804 г. и в более законченной форме Жан Батист Джозеф Фурье (1768-1830) в 1807 и 1811 гг. основали математическую теорию теплопроводности. Созданные ими для этой цели методы являются классическими вспомогательными средствами математической физики; это относится прежде всего к изображению произвольных функций в виде рядов или интегралов синусоидальных функций. В теории любого волнового процесса, будет ли это звук, волны на поверхности жидкостей или электромагнитные колебания, играет важную роль созданное Фурье разложение на чистые синусоидальные колебания, тем более, что каждый акустический резонатор, каждый оптический спектральный аппарат совершают это разложение автоматически (до известной степени). В дополнение к этому математика создала разложение функций в ряды «ортогональных» функций, которые теперь имеют огромное значение для решения уравнения Шредингера (гл. 14).