История физики | страница 36




разрядной искры во вращающемся зеркале. В 1870 г. Фридрих Вильгельм Безольд (1837-1907) явно обнаружил колебания в проводящих проволоках со свободным концом и в цепи резонатора с разомкнутым искровым промежутком. Но впервые в руках Герца подобные резонаторы стали средством исследования волн в атмосфере, средством доказательства их поляризации, отражения, преломления, а также интерференции; они дали возможность также измерить длины волн и тем самым скорость распространения.

Волны, с которыми экспериментировал Герц, были сильно затухающими. Если мы теперь можем повторить его опыты с незатухающими волнами и, следовательно, с большей точностью, то этим мы обязаны технике. Но эта техника прошла трудный путь до 1913 г. и позже, пока научились получать незатухающие волны на основе принципа обратной связи (гл. 1), что было использовано для беспроволочного телеграфа и других подобных целей.

Как за Ньютоном последовала эпоха математического оформления механики, так отныне наступила пора математической обработки теории Максвелла. Для представления магнитных вихревых полей стационарных токов уже в прежние времена был введен вектор-потенциал. Теперь ему и скалярному потенциалу электростатики был противопоставлен запаздывающий потенциал, введенный в 1898 г. Альфредом Мари Лиенаром и в 1900 г. Эмилем Вихертом (1861-1928). В этом потенциале конечная скорость распространения электромагнитных волн находит свое наиболее четкое выражение. Перечисление всех исследователей, которые математически решали важные научные и технические проблемы переменных электрических полей, выходит далеко за рамки данной книги. В современном изложении теория Максвелла является замечательным творением, равноценным механике.


В начале XX века учение об электричестве и магнетизме казалось достаточно завершенным, тем более, что незадолго до этого атомистика внесла порядок и ясность в понимание явлений разряда в разреженных газах. Однако именно в самой существенной области этого учения, в области электропроводности, было открыто новое неожиданное явление. В 1835 г. измерениями Э. X. Ленца (1804-1865) было показано, что сопротивление металлов при охлаждении уменьшается. Камерлинг-Оннес (1853-1926) исследовал это явление при температуре 10° К, достигнутой в 1908 г. при ожижении гелия. Он нашел, что у металлов, например у золота, серебра, меди, имеется некоторое критическое значение сопротивления, ниже которого оно не падает. Но в 1911 г. он обнаружил сначала у ртути, а затем у свинца, олова и некоторых других металлов внезапное исчезновение сопротивления электрическому току, как только температура падала ниже критической точки, характерной для этих тел. Так была установлена сверхпроводимость. В 1914 г. Камерлинг-Оннес показал, что ток, циркулирующий в сверхпроводящем кольце, не изменялся по величине в течение нескольких дней без приложения какой-либо электродвижущей силы. Наконец, Камерлинг-Оннес нашел также, что при постоянной температуре сверхпроводимость может быть разрушена действием магнитного поля, после чего вступает в свои права закон Ома. Напряженность магнитного поля, при котором еще сохраняется сверхпроводимость, изменяется по мере понижения температуры и у чистых металлов может достигать несколько сот гаусс.