Достаточно общая теория управления | страница 28
по совокупности рассматриваемых вариантов. В математической теории вероятностей, – вследствие исключения из модели личностного аспекта и управления, – этому соответствует плотность распределения вероятности. Не воспринимая бесконечные последовательности цифр, представляющие реальные числа, человек воспринимает и оперирует их конечными приближениями. То, что он воспринимает как приближённую оценку математической вероятности или жизненной вероятностной предопределённости, представляет собой некое число вида 0.Х Х Х …Х ? 10 , где Х Х …, Х – цифры от 0 до 9, в позиционной десятичной системе счисления (той, что мы пользуемся в повседневности), в совокупности образующие мантиссу 0.Х Х Х …Х не превосходящую 1.0. Мантисса – десятичная дробь с конечным числом знаков после запятой (десятичной точки); «к» – порядок – показатель степени числа 10, т.е. количество позиций, на которое необходимо перенести запятую (десятичную точку) вправо (при к» 0) или влево (при к «0) относительно её положения в мантиссе, чтобы получить это же число в обычной десятичной форме представления с конечными целой и дробной частями, разделяемыми на письме десятичной точкой или десятичной запятой (Х Х Х …Х. Х Х Х …Х , при к» 0). Это число 0.Х Х Х …Х ? 10 человек бездумно ошибочно способен отождествить со всяким точным значением, включая и точное значение вероятностной предопределённости будущего вообще, равное 1.0, забывая о том, что его число – математическая вероятность – приближённая оценка объективной вероятностной предопределённости, так или иначе полученная на основе статистики прошлого, и содержит в себе некую ошибку, как вследствие неточности математических и неформализованных статистических моделей, свойственных психике человека, так и вследствие объективного изменения вероятностных предопределённостей с течением событий.
Человек может ошибиться в восприятии порядка «к», в результате чего ничтожное кажется ему чрезвычайно значимым, а значимое – пренебрежимо ничтожным. Но и при верном восприятии порядка «к» мантисса также воспринимается с некоторой ошибкой. Кроме того, кто-то может воспринимать верно один знак после запятой, а кто-то – три. Но воспринимающий верно один знак может воспринимать ещё семь ошибочных и будет думать, что его восприятие полнее, чем восприятие того, кто воспринимает всего три знака, но все три верно (при условии, что они оба не ошиблись в восприятии порядка «к»).
Книги, похожие на Достаточно общая теория управления