Космические методы в океанологии | страница 23
В настоящее время успешно идут эксперименты по созданию инфракрасных лазеров (например, газовых лазеров, работающих на углекислом газе и имеющих излучение с длиной волны 10,6 мкм). С помощью этих приборов, установленных на самолетах, хорошо определяется загрязнение океана нефтепродуктами и решаются некоторые другие задачи, интересующие океанологов. Эти эксперименты показывают, что приборы подобного класса подходят для дистанционных исследований Мирового океана и в принципе возможна их установка на борту ИСЗ. Тогда и в инфракрасном диапазоне можно будет проводить активное зондирование океана.
В заключение этого раздела отметим, что информация инфракрасного, как и видимого, диапазона, получаемая даже в глобальном масштабе, имеет фрагментарный характер из-за покрытия многих районов Мирового океана плотной облачностью и туманом. Глобальное изучение океана без пропусков возможно только при использовании волн радиодиапазона.
РАДИОФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОКЕАНА ИЗ КОСМОСА
Радиофизические методы исследования Мирового океана из космоса, включая и исследования атмосферы над океаном, проводятся в микроволновом или, иначе говоря, в сверхвысокочастотном (СВЧ) диапазоне спектра на радиоволнах с длиной от нескольких миллиметров до нескольких дециметров. Формирование собственного теплового излучения океана или отраженного его поверхностью определяется в радиодиапазоне обширным комплексом гидрофизических параметров, что позволяет в ряде случаев получать информацию, которую трудно или просто невозможно добыть при зондировании океана в оптическом диапазоне спектра.
Прозрачность земной атмосферы в радиодиапазоне велика, причем относительно прозрачна даже облачная атмосфера. Это позволяет с помощью радиометодов проводить исследования там, где трудно или просто невозможно использовать оптические методы. Конечно, в той или иной мере атмосфера Земли и в этом диапазоне влияет на излучение поверхности океана, регистрируемое на борту КА, однако в ряде случаев это влияние невелико и его можно учесть. По сравнению с видимым и инфракрасным диапазонами спектра, влияние атмосферы в радиодиапазоне значительно меньше, и передаточная функция атмосферы значительно ближе к единице.
Так, по данным одной из экспериментальных работ, выполненных советскими учеными, в области длин волн около 0,8 см совершенно непрозрачный для волн оптического диапазона плотный слой кучевых облаков толщиной около 1,5 км над акваторией Азовского моря приводил к изменению так называемой радиояркостной температуры морской поверхности на 20 − 25 К. При переходе же к волнам с длиной волны 3,2 см вклад атмосферы еще более уменьшался, и ошибка измерения радиояркостной температуры моря, определяемая атмосферой, уменьшалась до 3 К, т. е. не превышала 1 − 2 %.