Космическая технология и производство | страница 4



Типичная схема технологического процесса производства какого-либо материала состоит в том, что к исходному сырью подводится энергия, обеспечивающая прохождение тех или иных фазовых превращений или химических реакций, которые и ведут к получению нужного продукта. Наиболее естественный источник энергии для обработки материалов в космосе — это Солнце. На околоземной орбите плотность энергии излучения Солнца составляет около 1,4 кВт/м>2, причем 97 % этой величины приходится на диапазон длин волн от 3 · 10>3 до 2 · 10>4 Å. Однако непосредственное использование солнечной энергии для нагрева материалов связано с рядом трудностей. Во-первых, солнечную энергию нельзя использовать на затемненном участке траектории космического корабля. Во-вторых, требуется обеспечивать постоянную ориентацию приемников излучения на Солнце. А это, в свою очередь, усложняет работу системы ориентации космического аппарата и может повести к нежелательному увеличению ускорений, нарушающих состояние невесомости.

Что касается других условий, которые могут быть реализованы на борту космических аппаратов (низкие температуры, использование жесткой компоненты солнечной радиации и т. д.), то использование их в интересах космического производства в настоящее время не предусматривается.

Поведение вещества в невесомости

Агрегатные и фазовые состояния вещества. При рассмотрении особенностей поведения вещества в космических условиях часто используются такие понятия, как агрегатное и фазовое состояния, фаза и компоненты. Дадим определение этих понятий.

Агрегатные состояния вещества различаются по характеру теплового движения молекул или атомов. Обычно говорят о трех агрегатных состояниях — газообразном, твердом и жидком. В газах молекулы почти не связаны силами притяжения и движутся свободно, заполняя весь сосуд. Структура кристаллических твердых тел характеризуется высокой упорядоченностью — атомы расположены в узлах кристаллической решетки, возле которых они совершают лишь тепловые колебания. В результате кристаллические тела имеют строго ограниченную форму, а при попытке каким-то образом изменить ее возникают значительные упругие силы, противодействующие такому изменению.

Наряду с кристаллами известна и другая разновидность твердых тел — аморфные тела. Главная особенность внутреннего строения аморфных твердых тел — отсутствие полной упорядоченности: лишь в расположении соседних атомов соблюдается порядок, который сменяется хаотическим расположением их друг относительно друга на более значительных расстояниях. Наиболее важный пример аморфного состояния — это стекло.