Что такое философия | страница 20
Теперь мы видим, что наша капитуляция перед так называемой "научной истиной", то есть видом истины, присущим физике и родственным наукам, оказалась предрассудком.
Но освобождению способствовало еще одно очень важное событие.
Припомните, что вышесказанное могло быть сформулировано так: каждая наука признает свои границы и на их основе вырабатывает свой позитивный метод. Событие, которое я сейчас коротко обрисую, еще один шаг в этом направлении: каждая наука приобретает независимость от остальных, то есть не подчиняется их юрисдикции.
Новая физика и здесь дает нам наиболее ясный и известный пример. Галилей видел задачу физики в открытии специальных законов поведения тел "в придачу к общим геометрическим законам". Ему ни на миг не приходило в голову усомниться в господстве этих законов над телесными явлениями. Поэтому он не стал производить опытов, доказывающих, что природа подчиняется евклидовым теоремам. Он заранее допустил как нечто самоочевидное и обязательное высшую юрисдикцию геометрии над физикой; если сказать то же самое иными словами, считал геометрические законы законами физическими, или в высшей степени. Самым гениальным в труде Эйнштейна мне представляется решительность, с которой он избавляется от традиционного предрассудка; заметив несоответствие наблюдаемых явлений закону Евклида, он оказывается перед конфликтом юрисдикции геометрии и чистой физики и, не колеблясь, объявляет последнюю независимой. Сравнивая его решение с решением Лоренца, мы находим у них противоположный склад ума. Чтобы объяснить эксперимент Майкельсона, Лоренц в русле традиции решает приспособить физику к геометрии. Чтобы геометрическое пространство не меняло своих свойств, тело должно сокращаться. Эйнштейн, напротив, решает приспособить геометрию и пространство к физике и телесным объектам.
Аналогичные ситуации так часто наблюдаются в других науках, что остается недоумевать, почему столь явная и характерная черта современного мышления не привлекла ничьего внимания.
Учение о рефлексах Павлова и теория цветового зрения Геринга являются классическими современными примерами построения физиологии, независимой от физики и психологии. С помощью чисто физиологических методов исследования в них рассматриваются биологические явления как таковые в их отличия от свойств, общих для физических или психологических фактов.
Но особенно остро, почти скандально этот новый научный темперамент проявляется в математике. Ее зависимость от логики на памяти последних поколений превратилась почти в тождество. И тут голландец Броуэр приходит к открытию, что логическая аксиома так называемого "исключенного третьего" непригодна для математической реальности и следует создать математику "без логики", верную одной себе и неподвластную чужим аксиомам.