Многоликая Вселенная | страница 10
Давайте посмотрим на уравнения. Я сейчас никакие уравнения решать не буду, а показывать их буду, так что не надо бояться... Первое — это немного упрощенное уравнение Эйнштейна, которое говорит: вот это скорость расширения Вселенной поделить на размер, это есть Хаббловская постоянная в квадрате, и она пропорциональна плотности энергии вещества во Вселенной. А я сейчас захочу пренебречь всем — там, газом, чем угодно... оставить только скалярное поле. И здесь надо было бы написать гравитационную постоянную, там еще восемь пи на три...
Сейчас забудем про гравитационную постоянную. Люди, которые занимаются этой наукой, они говорят: ну, возьмем гравитационную постоянную равную единице, скорость света, равную единице, постоянную Планка, равную единице, а потом, когда всё решим, мы это обратно вставим в решение, чтобы проще было...
Значит, вот это чуть-чуть упрощенное уравнение Эйнштейна, я оттуда еще выбросил пару членов, которые сами оттуда выбрасываются, после того как Вселенную начнет быстро сдувать. Это уравнение движения для скалярного поля. Не глядите сейчас на этот член. Это есть ускорение скалярного поля, а это показывает ту силу, с которой поле хочет устремиться в свой минимум энергии. И, для того чтобы было понятно, сравните это с уравнением для гармонического осциллятора. Опять, не смотрите на этот член. Это есть ускорение гармонического осциллятора, пропорциональное возвращающей силе. То есть сила, которая тащит поле осциллятора в точку x = 0, а это его ускорение. И мы знаем, чем дело кончается. Осциллятор так вот осциллирует. А если мы добавим такой член, x с точкой. Это скорость движения осциллятора. То есть это, если его перенести вот в эту сторону, будет понятно, что это как бы сила, которая не пускает осциллятор двигаться быстро. Это примерно как если вы засунете маятник в воду, то вода будет препятствовать осцилляции, и он будет осциллировать всё медленнее и медленнее. Как бы сила трения или вязкости.
Вот оказывается, что во Вселенной тоже имеется аналогичный член, который описывает уравнение для скалярного поля. Уравнение-то выглядит точно так же. И этот член похож на этот. Вот оказывается, что во Вселенной эффект трения возникает, если Вселенная быстро расширяется. Вот такой трюк. Теперь давайте вернемся к предыдущей картинке.
Вот когда скалярное поле здесь, то энергии у скалярного поля мало, Вселенная расширяется медленно, трения никакого нету. Если скалярное поле находится здесь, то энергия очень большая. Если энергия очень большая, посмотрим, что получается, на следующей картинке.