Приборостроение | страница 7
Закон нормального распределения (закон Гаусса). Практика неуклонно подтверждает, что закону Гаусса с достаточным приближением подчиняются законы распределения ошибок при измерениях самых различных параметров: от линейных и угловых размеров до характеристик основных механических свойств стали.
Плотность вероятности закона нормального распределения (в дальнейшем Н. Р.) имеет вид
где x>0 – среднее значение случайной величины;
τ – среднее квадратическое отклонение той же случайной величины;
e = 2,1783… – основание натурального логарифма;
Ж – параметр, который удовлетворяет условию.
Причина широкого применения закона нормального распределения теоретически определяется теоремой Ляпунова.
При известных Х>0 и δ ординаты кривой функции f(x) можно вычислить по формуле
где t – нормированная переменная,
(t) плотность вероятности z. Если подставить z и (t) в формулу, то следует:
Кривую З.Н.Р. часто называют кривой Гаусса, этот закон описывает очень многие явления в природе.
10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета
1. Биноминальный закон распределения. Этот закон математически выражается формулой разложения бинома (q + p)2 в следующем виде
где n! – читается как n-факториал,
C>n>m – биноминальный коэффициент, выражающий количество сочетаний из n элементов по m, причем, n – положительное целое число.
2. Полиномиальный закон распределения (П/З/Р). В предыдущем случае рассмотрено два исхода появления случайного события А: или оно появится с вероятностью р, или не появится с вероятностью q = 1 – p.
Когда количество независимых испытаний равно n, то велика вероятность того, что каждое событие V>i произойдет n раз, где i =1, 2,..., k. Причем
определяется формулой
В виде формулы (58) получен искомый полиномиальный полиноминальный закон распределения.
3. Равновероятное распределение. Рассматривая вышеприведенные законы распределения случайной величины, пришлось подчеркнуть различия в их проявлении при условиях: прерывно ли распределение случайных величин или непрерывно?
Другое название этого закона – равномерное, или прямоугольное распределение, несет в себе больше информации о кривой этого закона. Вероятность наступления случайного события А на рассматриваемом промежутке одинакова в любой точке из промежутка[в; с]. Для Р/Р плотность
где в, с – параметры З/Р/Р.
Функция распределения для З/Р/Р имеет вид:
11. Другие законы распределения