Неорганическая химия | страница 14



Химические взаимодействия осуществляются за счет донорно-акцепторных связей. Здесь ионы раст–воренного вещества являются акцепторами электронов, а растворители (Н>2О, NН>3) – донорами электро–нов (например, образование аквакомплексов), а также в результате образования водородных связей (например, растворение спирта в воде).

Доказательствами химического взаимодействия раст–воренного вещества с растворителем являются теп–ловые эффекты и изменение окраски, сопровождаю–щие растворение.

Например, при растворении гидроксида калия в во–де выделяется теплота:

КОН + хН>2О = КОН(Н>2О)х; ΔН°>раств = –55 кДж/моль.

А при растворении хлорида натрия теплота погло–щается:

NaCI + хН>2О = NaCI(H>2О)х; ΔН°>раств = +3,8 кДж/моль.

Теплота, выделяемая или поглощаемая при раство–рении 1 моля вещества, называется теплотой раст–ворения Q>раств

В соответствии с первым началом термодинамики

Q>раств = ΔН>раств,

где ΔН>раств – изменение энтальпии при растворе–нии данного количества вещества.

Растворение в воде безводного сульфата меди бело–го цвета приводит к появлению интенсивной голубой окраски. Образование сольватов, изменение окраски, тепловые эффекты, как и ряд других факторов, свиде–тельствуют об изменении химической природы компо–нентов раствора при его образовании.

Таким образом, в соответствии с современными представлениями, растворение – физико-химический процесс, в котором играют роль как физические, так и химические виды взаимодействия.

13. Термодинамика процесса растворения

Согласно второму началу термодинамики при р, Т = = const вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т. е.

ΔG = (ΔН – TΔS) < 0.

Величину ΔН называют энтальпийным фактором, а величину TΔS – энтропийным фактором растворения.

При растворении жидких и твердых веществ энтропия системы обычно возрастает (ΔS > 0), так как растворяе–мые вещества из более упорядоченного состояния пе–реходят в менее упорядоченное. Вклад энтропийного фактора, способствующий увеличению растворимости, особенно заметен при повышенных температурах, по–тому что в этом случае множитель Т велик и абсолютное значение произведения TΔS также велико, соответст–венно возрастает убыль энергии Гиббса.

При растворении газов в жидкости энтропия системы обычно уменьшается (ΔS < 0), так как растворяемое вещество из менее упорядоченного состояния (боль–шого объема) переходит в более упорядоченное (ма–лый объем). Снижение температуры благоприятствует растворению газов, потому что в этом случае множи–тель Т мал и абсолютное значение произведения TΔS будет тем меньше, а убыль энергии Гиббса тем больше, чем ниже значение Т.