Гидравлика | страница 13



С учетом этого, компоненты φ выглядят следующим образом:


Формулой (1) описывается неустановившееся движение, поскольку она содержит параметр t.

Ускорение при ламинарном движении

Ускорение движения жидкой частицы имеет вид:


где du/dt – полные производные по времени.

Ускорение можно представить в таком виде, исходя из


Составляющие искомого ускорения


Формула (4) содержит в себе информацию о полном ускорении.

Слагаемые υu>x/υt, υu>y/υt, υu>z/υt, называют местными ускорителями в рассматриваемой точке, которыми характеризуются законы изменения поля скоростей.

Если движение установившееся, то


Само поле скоростей может быть названо конвекцией. Поэтому остальные части сумм, соответствующие каждой строке (4), называют конвективными ускорениями. Точнее, проекциями конвективного ускорения, которое характеризует неоднородность поля скоростей (или конвекций) в конкретный момент времени t.

Само полное ускорение можно назвать некоторой субстанцией, которая является суммой проекций

du>x/dt, du>y/dt, du>z/dt,

19. Уравнение неразрывности жидкости

Довольно часто при решении задач приходится определять неизвестные функции типа:

1) р = р (х, у, z, t) – давление;

2) n>x(х, у, z, t), ny(х, у, z, t), n>z(х, у, z, t) – проекции скорости на оси координат х, у, z;

3) ρ (х, у, z, t) – плотность жидкости.

Эти неизвестные, всего их пять, определяют по системе уравнений Эйлера.

Количество уравнений Эйлера всего три, а неизвестных, как видим, пять. Не хватает еще двух уравнений для того, чтобы определить эти неизвестные. Уравнение неразрывности является одним из двух недостающих уравнений. В качестве пятого уравнения используют уравнение состояния сплошной среды.


Формула (1) является уравнением неразрывности, то есть искомое уравнение для общего случая. В случае несжимаемости жидкости ∂ρ/dt = 0, поскольку ρ = const, поэтому из (1) следует:


поскольку эти слагаемые, как известно из курса высшей математики, являются скоростью изменения длины единичного вектора по одному из направлений X, Y, Z.

Что касается всей суммы в (2), то она выражает скорость относительного изменения объема dV.

Это объемное изменение называют пооразному: объемным расширением, дивергенцией, расхождением вектора скоростей.

Для струйки уравнение будет иметь вид:


где Q – количество жидкости (расход);

ω– угловая скорость струйки;

∂l – длина элементарного участка рассматриваемой струйки.

Если давление установившееся или площадь живого сечения ω = const, то ∂ω /∂t = 0, т. е. согласно (3),