Начертательная геометрия | страница 10
Прямое утверждение справедливо во всех случаях без исключения. Обратное же утверждение неприменимо в том случае, если хотя бы одна из прямых профильная.
Когда прямые параллельны, на эпюре их одноименные проекции параллельны (рис. 28).
На самом деле, плоскости Р и Q, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в каждой из этих плоскостей можно указать две пересекающиеся прямые, параллельные двум пересекающимся прямым второй плоскости, т. е. прямая I параллельна прямой II, и проектирующий луч Аа параллелен лучу Вb. Но две параллельные плоскости Р и Q пересекут горизонтальную плоскость. В результате этого образуются две параллельные прямые 1 и 2, т. е. горизонтальные проекции прямых I и II параллельны между собой.
Аналогично можно доказать, что и любые другие одноименные проекции обеих прямых также будут параллельны друг другу.
Верно и обратное утверждение: прямые параллельны, если на эпюре их одноименные проекции параллельны.
Если известно, что горизонтальные и фронтальные проекции прямых I и II параллельны, будет справедливо следующее: 1 || 2 и 1́|| 2́ (рис. 29).
В этом случае можно сказать, что плоскости Р>I и Р>II, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в этих плоскостях можно указать по паре пересекающихся соответственно параллельных прямых (прямые 1 и 2 и проецирующие лучи). Аналогично плоскости Q>I и Q>II будут параллельны.
Прямая I находится в пересечении плоскостей Р>I и Q>I, а прямая II – в пересечении плоскостей Р>II Q>II. Отсюда получаем, что прямая I параллельна плоскости Р>II, потому что находится в плоскости, ей параллельной. Однако прямая I параллельна и плоскости Q>II. Поэтому прямая I параллельна линии пересечения плоскостей Р>II и Q>II, т. е. прямой II.
Доказательство обратного утверждения не имеет смысла для профильных прямых. Это объясняется тем, что тогда вместо двух плоскостей, проецирующих прямую на горизонтальную и фронтальную плоскости, существует только одна, дважды проецирующая плоскость (рис. 30).
Видно, что вне зависимости от расположения двух профильных прямых I и II в пространстве их горизонтальные и фронтальные проекции всегда параллельны (или сливаются).
Прямые будут являться скрещивающимися, если они не параллельны и не пересекаются. Это вытекает из того, что возможны только три случая взаимного расположения прямых.
Для скрещивающихся прямых справедливы утверждения:
1) точки пересечения одноименных проекций на горизонтальной и фронтальной плоскостях не лежат на одном перпендикуляре к оси