100 великих учёных | страница 56
С другой стороны, простота формулировки этой теоремы и загадочные слова о «чудесном доказательстве» её привели к широкой популярности теоремы среди нематематиков и к образованию целой корпорации «ферматистов», у которых, по словам Дэвенпорта, «смелость значительно превосходит их математические способности». Поэтому Великая теорема стоит на первом месте по числу данных ей неверных доказательств.
Сам Ферма оставил доказательство Великой теоремы для четвёртых степеней. Здесь он применил «метод неопределённого или бесконечного спуска», который он описывал в своём письме к Каркави (август 1659 года) следующим образом:
«Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы в силу подобного рассуждения третий, меньший второго, который имел бы то же свойство, и, наконец, четвёртый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я всё время подразумеваю целые числа). Откуда заключают, что не существует никакого прямоугольного треугольника с квадратной площадью». Именно этим методом были доказаны многие предложения теории чисел, и, в частности, с его помощью Эйлер доказал Великую теорему для n=4 (способом, несколько отличным от способа Ферма), а спустя 20 лет и для n=3.
В прошлом веке Куммер, занимаясь Великой теоремой Ферма, построил арифметику для целых алгебраических чисел определённого вида. Это позволило ему доказать Великую теорему для некоторого класса простых показателей n. В настоящее время справедливость Великой теоремы проверена для всех показателей n меньше 5500.
Отметим также, что Великая теорема связана не только с алгебраической теорией чисел, но и с алгебраической геометрией, которая сейчас интенсивно развивается.
У Ферма есть много других достижений. Он первым пришёл к идее координат и создал аналитическую геометрию. Он занимался также задачами теории вероятностей. Но Ферма не ограничивался одной только математикой, он занимался и физикой, где ему принадлежит открытие закона распространения света в средах. Ферма исходил из предположения, что свет пробегает путь от какой-либо точки в одной среде до некоторой точки в другой среде в наикратчайшее время. Применив свой метод максимумов и минимумов, он нашёл путь света и установил, в частности, закон преломления света. При этом Ферма высказал следующий общий принцип: «Природа всегда действует наиболее короткими путями», который может считать предвосхищением принципа наименьшего действия Мопертюи — Эйлера.