По ту сторону смерти | страница 60



Любопытно то, что подобные шутки можно сыграть также и с нами, что и происходит постоянно. Все, кто занимался спиритизмом и его явлениями, знают, что во время сеансов часто происходят вещи, подобные тем, которые я описывал. Нередко из закрытой коробки достается предмет или же пришедшее к нам существо показывает, что для него коробка не закрыта, прочитав то, что написано внутри. Часто кто-нибудь появляется рядом с нами, а затем необъяснимым для нас образом исчезает. Очевидно, что для нас способом объяснения таких явлений было бы предположить существование четвёртого измерения, относящегося к трёхмерному пространству так же, как наше — к двумерному. Если такое измерение реально, то существо, пользующееся им и понимающее его законы, может обращаться с нами точно так же, как мы могли бы обратиться с микробом из двумерного пространства, и совершать на наших глазах многие чудеса, никоим образом не противореча естественным законам, которые оно знает в совершенстве.

С точки зрения математики

Рассмотрим вопрос с другой точки зрения. Предположим, что мы имеем линию длиной в два дюйма. Если дюйм является нашей единицей длины, мы можем обозначить эту линию числом 2. Согласно законам геометрии, эта линия получена в результате перемещения точки в определённом направлении; если мы теперь изменим положение линии в направлении, перпендикулярном ей самой, на расстояние в 2 дюйма, тогда посредством этого видения мы получим квадрат, который можно математически обозначать числом 2>2. Если теперь мы изменим положение этого квадрата под прямым углом к нему самому на расстояние в 2 дюйма, то получим куб, который можно математически представить как 2>3. Вот мы имеем три фигуры, образованные соответствующими друг другу движениями. Точка даёт линию, линия — квадрат, квадрат даёт куб; эти три фигуры соответствуют в геометрии математическим числам 2, 2>2, 2>3.

Геометрически мы не можем продолжать эту серию операций, но в математике мы можем возвести число в четвёртую и любую другую степень. И каждое из этих математических выражений могло бы иметь своё представление в реальной пространственной геометрии. Какой была бы тогда форма геометрического тела, соответствующего 2>4, 2>5, 2>6?

Так как это тело мы не можем представить в материи, то должны попытаться сделать это в нашем воображении. Пытаться изучать эту фигуру значит пытаться достичь знания четвертого измерения. Но чтобы понять особенности нашей проблемы, мы должны следовать методу, с помощью которого была получена каждая из уже известных нам фигур.