Живой учебник геометрии | страница 53
§ 49. Угол, опирающийся на диаметр
Из свойств равнобедренного треугольника вытекает следующая особенность угла, вписанного в полукруг (черт. 138) или: как его иначе называют – «опирающего на диаметр»:
У г о л, о п и р а ю щ и й с я н а д и а м е т р, р а в е н п р я м о м у.
«Опирающимся на диаметр», или «вписанным в полукруг» называют такой угол, вершина которого лежит на дуге окружности, а стороны проходят через концы диаметра; таковы углы: 1 на черт. 138 и 2 на черт. 139. Желая удостовериться, что такой угол во всех случаях равен 90°, мы соединяем центр О полукруга (черт. 140) с вершиной В угла. Получаем два равнобедренных треугольника АОВ и ВОС (почему они равнобедренные?). В них
уг. 2 = уг. 1
уг. 3 = уг. 4.
Отсюда уг. 2 + уг. 3 (т. е. уг. АВС) = уг. 1 + уг. 4. Но так как уг. АВС + уг. 1 + уг. 4 = 180°, то уг. ABC= 90°.
Этим свойством окружности пользуются нередко для того, чтобы в изделиях проверять полуокружность помощью чертежного треугольника (как?).
§ 50. Прямоугольный треугольник
В треугольнике, мы знаем, может быть только один прямой угол. Такой треугольник называется п р я м о у г о л ь н ы м. Стороны прямоугольного треугольника имеют особые названия: каждая из сторон, между которыми лежит прямой угол, называется к а т е т о м, а сторона против прямого угла называется г и п о т е-н у з о й.
Применения
54. Через точку С (черт. 141) на прямой MNнужно провести перпендикуляр. Как это сделать?
Р е ш е н и е. Отложив (черт. 142) от С в обе стороны по какому-нибудь равному отрезку, т. е. CA= CB, описываем около А и В, как центров, каким-нибудь радиусом дуги; прямая PC, соединяющая точку Р пересечения дуг с точкой С, перпендикулярна к МN. Действительно, треугольники АР С и ВРС, получающиеся после соединения А и В с P, равны (СУС); следовательно, уг. АСР = уг. ВСР, а так как эти углы смежные, то они – прямые.
55. Через точку С (черт. 143) вне прямой МN про вести к этой прямой перпендикуляр.
Р е ш е н и е. Около точки С, как около центра, описываем каким-нибудь радиусом дугу АВ (черт. 144);
затем около точек А и В каким-нибудь радиусом описываем дуги D. Прямая DС перпендикулярна к МN. Чтобы убедиться в этом, соединим С и Dс А и В.
Треугольники ACDи ВCD равны (ССС), следовательно, уг. ACD= уг. DCВ, и значит, треугольник АСО = ВСО (СУС). Отсюда уг. AОС = уг. ВОС, а так как эти углы смежные, то они прямые.
56. Объясните, почему каждая точка М прямой ВM, делящей пополам угол АВС