Живой учебник геометрии | страница 17



можно было провести из точки А больше одного перпендикуляра, – скажем, кроме АВ еще АС, – то в треугольнике ABCоказалось бы два прямых угла, а это, мы знаем, невозможно.

5) Н е с к о л ь к о п е р п е н д и к у л я р о в к о д н о й п р я м о й л и н и и (черт. 48) в с е г д а п ар а л л е л ь н ы

м е ж д у с о б о ю. Если бы они были не параллельны, т. е. если бы они встречались, то составились бы треугольники с двумя прямыми углами каждый.

6) П р я м ы е л и н и и, в с т р е ч а ю щ и е о д н у и т у ж е п р я м у ю п о д р а в н ы м и с о о т в е т с т в е н н ы м и

у г л а м и (черт. 51), п а р а л л е л ь н ы м е ж д у с о б о й. – Если бы они были не параллельны, т. е. если бы встречались, то уг. 2, например, оказался бы внешним углом треугольника, а р а в н ы й е м у уг. 1 – внутренним углом того же треугольника; но это невозможно (см. следствие 3-е).

На последнем свойстве основан способ проводить параллельные линии с помощью линейки и чертежного треугольника (черт. 52).

Повторительные вопросы

Могут ли три угла треугольника быть тупыми? А только два угла? – Может ли в треугольнике быть три прямых угла? А два прямых угла? (Попробуйте начертить такой треугольник). – Сколько перпендикуляров можно провести к прямой линии из внешней точки? – Каким свойством обладают два перпендикуляра к одной прямой? – Каким свойством обладают две прямые, встречающие третью под равными соответственными углами? – Как чертят параллельные помощью линейки и чертежного треугольника?

§ 17. Как построить треугольник по трем сторонам

Рассмотрим следующую задачу:

Расстояния между тремя селениями 7 км, 5 км и 6 км. Начертить расположение этих селений в масштабе 1 км в 1 см.

Ясно, что точки, изображающие селения, нужно расположить на вершинах треугольника, стороны которого 7 см, 5 см и 6 см.

Объясним, как начертить («построить») этот треугольник

Проведем (черт. 53) по линейке прямую линию MNи отложим на ней помощью циркуля одну из сторон треугольника – напр., в 6 см. Концы этого отрезка обозначим буквами А и В. Остается найти такую третью точку, которая удалена от А на 7 см и от В на 5 см (или наоборот): это и будет третья вершина треугольника со сторонами 7 см, 5 см и 6 см. Чтобы эту точку разыскать, раздвигают сначала концы циркуля на 7 см и описывают окружность вокруг точки А, как около центра (черт. 54). Все точки этой окружности отстоят от Aна 7 см; среди них нужно найти ту, которая отстоит от вершины