Теория психосемиозиса и древняя антропокосмология | страница 7



Гюрджиев указывал, что схему эннеаграммы невозможно встретить при изучении "оккультизма" - ни в книгах, ни в устной передаче. Те, которым она была знакома, придавали ей такое важное значение, что считали необходимым хранить ее в глубокой тайне. И хотя Гюрджиев позволил себе обнародовать сведения об этой схеме, сделано это было в неполной и теоретической форме, из которой нельзя извлечь практической пользы (48, с. 328, 336).

Однако детальное изучение проблемы эннеаграммы показало, что умолчание знаний о ней не всегда строго соблюдалось. Стало ясно, что эннеаграмма входит, например, в зороастрийскую теологию, древнекитайскую медицинскую теорию, в каббалу, средневековую европейскую алхимию и т. д. Появилась возможность различать ее варианты. Так, например, выявилось главное различие восточного (китайского) и западного (гюрджиевcкого) вариантов эннеаграммы - указанная выше шестеричность или семеричность ее структуры.

Что касается неоплатоников, то прямых указаний на знакомство их с этой схемой пока не обнаружено. Косвенных же - предостаточно. То же самое можно сказать и о пифагорейцах (о них вообще мало чего известно достоверного). Но если предположить, что эннеаграмма была известна пифагорейцам, а от них перешла к неоплатоникам, то это проливает свет на вопрос, почему представители раннего пифагореизма так тщательно оберегали от непосвященных тайну иррациональности. Среди исследователей сложилось мнение, что явление иррациональности (или несоизмеримости) якобы опровергало всю их философию, полагавшую в начале всего число (38, с. 54). Они не знали, как поправить положение, поэтому и скрывали иррациональность (52, с. 145). Однако дело, видимо, было в том, что одно из иррациональных чисел - 1/7 - входило в структуру эннеаграммы, а ее-то следовало оберегать от непосвященных. Особым образом понимаемая иррациональность нисколько не подрывала устои пифагореизма, а, напротив, составляла наиболее сакральный пункт его взглядов на закономерности бытия. Классический пример иррациональности, основанный на теореме Пифагора, - это отношение диагонали к стороне квадрата, равное ж2. Приблизительное выражение этого отношения равно 10/7, что является одним из вариантов эннеаграммного счисления. Платон в "Государстве" (546с) говорит о "диаметрах пятерки", с помощью которых греки получали другое приближение вышеуказанного отношения - 7/5. Здесь также фигурирует число 7. Архимед использовал дробь 22/7, являющуюся еще одним вариантом эннеаграммного счисления, для приблизительного выражения числа "Пи". В связях между всеми этими числами, которые, возможно, были известны пифагорейцам, еще предстоит разобраться.