Большая Советская Энциклопедия (СП) | страница 36
А. М. Яглом.
Спектральное разложение (математич.)
Спектра'льное разложе'ние линейного оператора, представление линейного оператора А в виде линейной комбинации операторов проектирования на взаимно перпендикулярные оси или (более общо) в виде специального интеграла, содержащего под знаком интегрирования семейство операторов проектирования, удовлетворяющее определённым условиям (так называемое разложение единицы, отвечающее оператору А). Изучение С. р. и их возможных обобщений для различных типов линейных операторов составляет основное содержание спектрального анализа линейных операторов.
Спектральное разложение (случайной функции)
Спектра'льное разложе'ние случайной функции, разложение случайной функции (в частности, случайного процесса) в ряд или интеграл по той или иной специальной системе функций такое, что коэффициенты этого разложения представляют собой взаимно некоррелированные случайные величины. Наиболее известный класс С. р. случайных функций — представления стационарных случайных процессов Х (t) в виде интеграла Фурье — Стилтьеса
где Z(l) — случайная функция с некоррелированными приращениями. Существование такого С. р. показывает, что стационарный случайный процесс всегда можно рассматривать как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными фазами и амплитудами. С. р. аналогичного вида, но с заменой гармонических колебаний n-мерными плоскими волнами, имеет место и для однородных случайных полей в n-мерном пространстве. Другой тип С. р. случайных функций — это разложение случайного процесса X(t), заданного на конечном отрезке оси (или, более общо, случайной функции X(t), заданной на ограниченной области n-мерного пространства), в ряд вида
где j>k(t) и l>k — собственные функциии собственные значения интегрального оператора в функциональном пространстве с ядром, равным корреляционной функции случайного процесса (или функции) X(t), a Z>k, k = 1, 2,..., — последовательность попарно некоррелированных случайных величин единичной дисперсии. С. р. специального вида имеют место также для однородных и изотропных случайных полей в евклидовых пространствах и для однородных полей на пространствах с группой преобразований, отличных от евклидова пространства.
Лит.: Яглом А. М., Спектральные представления для различных классов случайных функций, в кн.; Труды 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 250—73: Гихман И. И., Скороход А. В., Теория случайных процессов, т.1, М., 1971.