Большая Советская Энциклопедия (КВ) | страница 80
Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые частицы являются квантовыми объектами и что для них существенны неопределённостей соотношения. Эти соотношения связывают неопределённости координаты частицы (Dх) и её импульса (Dр):
Имеется и второе соотношение — для неопределённостей энергии DE и специфического времени Dt данного физического процесса (т. е. времени, в течение которого процесс протекает):
Если рассматривается взаимодействие между частицами посредством обмена квантами поля (это поле часто называется промежуточным), то за Dt естественно принять продолжительность такого акта обмена. Вопрос о возможности испускания кванта свободной частицей отпадает: энергия частицы, согласно (10), не является точно определённой; при наличии же квантового разброса энергий DE законы сохранения энергии и импульса не препятствуют более ни испусканию, ни поглощению переносящих взаимодействие квантов, если только эти кванты имеют энергию ~ DE и существуют в течение промежутка времени
Проведённые рассуждения не только устраняют указанный выше парадокс, но и позволяют получить важные физические выводы. Рассмотрим взаимодействие частиц в ядрах атомов. Ядра состоят из нуклонов, т. е. протонов и нейтронов. Экспериментально установлено, что вне пределов ядра, т. е. на расстояниях, больших примерно 10>–12см, взаимодействие неощутимо, хотя в пределах ядра оно заведомо велико. Это позволяет утверждать, что радиус действия ядерных сил имеет порядок L ~ 10>–12см.Именно такой путь пролетают, следовательно, кванты, переносящие взаимодействие между нуклонами в атомных ядрах. Время пребывания квантов «в пути», даже если принять, что они движутся с максимально возможной скоростью (со скоростью света с), не может быть меньше, чем Dt »×L/c.Согласно предыдущему, квантовый разброс энергии DE взаимодействующих нуклонов получается равным DE ~