Большая Советская Энциклопедия (КВ) | страница 80



  Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые частицы являются квантовыми объектами и что для них существенны неопределённостей соотношения. Эти соотношения связывают неопределённости координаты частицы (Dх) и её импульса (Dр):

     (9)

  Имеется и второе соотношение — для неопределённостей энергии DE и специфического времени Dt данного физического процесса (т. е. времени, в течение которого процесс протекает):

.     (10)

  Если рассматривается взаимодействие между частицами посредством обмена квантами поля (это поле часто называется промежуточным), то за Dt естественно принять продолжительность такого акта обмена. Вопрос о возможности испускания кванта свободной частицей отпадает: энергия частицы, согласно (10), не является точно определённой; при наличии же квантового разброса энергий DE законы сохранения энергии и импульса не препятствуют более ни испусканию, ни поглощению переносящих взаимодействие квантов, если только эти кванты имеют энергию ~ DE и существуют в течение промежутка времени

.

  Проведённые рассуждения не только устраняют указанный выше парадокс, но и позволяют получить важные физические выводы. Рассмотрим взаимодействие частиц в ядрах атомов. Ядра состоят из нуклонов, т. е. протонов и нейтронов. Экспериментально установлено, что вне пределов ядра, т. е. на расстояниях, больших примерно 10>–12см, взаимодействие неощутимо, хотя в пределах ядра оно заведомо велико. Это позволяет утверждать, что радиус действия ядерных сил имеет порядок L ~ 10>–12см.Именно такой путь пролетают, следовательно, кванты, переносящие взаимодействие между нуклонами в атомных ядрах. Время пребывания квантов «в пути», даже если принять, что они движутся с максимально возможной скоростью (со скоростью света с), не может быть меньше, чем Dt »×L/c.Согласно предыдущему, квантовый разброс энергии DE взаимодействующих нуклонов получается равным DE ~

. В пределах этого разброса и должна лежать энергия кванта — переносчика взаимодействия. Энергия каждой частицы массы m складывается из её энергии покоя, равной mc2,и кинетической энергии, растущей по мере увеличения импульса частицы. При не слишком быстром движении частиц кинетическая энергия мала по сравнению с mc>2, так что можно принять DE » mc>2. Тогда из предыдущей формулы следует, что квант, переносящий взаимодействия в ядре, должен иметь массу порядка
. Если подставить в эту формулу численные значения величин, то оказывается, что масса кванта ядерного поля примерно в 200—300 раз больше массы электрона.