Большая Советская Энциклопедия (ИЗ) | страница 27



в произвольном волокне какого-либо поперечного сечения бруса (рис. 2 ), лежащем на расстоянии y от нейтральной оси, определяются формулой
 где M>z — изгибающий момент в сечении, a I>z момент инерции поперечного сечения относительно нейтральной оси. Наибольшие нормальные напряжения возникают в крайних волокнах сечения
 момент сопротивления поперечного сечения). Касательные напряжения t , возникающие при поперечном И., определяются по формуле Д. И. Журавского
 где Q>y — поперечная сила в сечении, S>z статический момент относительно нейтральной оси части площади поперечного сечения, расположенной выше (или ниже) рассматриваемого волокна, b ширина сечения на уровне рассматриваемого волокна. Характер изменения изгибающих моментов и поперечных сил по длине бруса обычно изображается графиками-эпюрами, по которым определяются их расчётные значения. Под влиянием И. ось бруса искривляется, ее кривизна определяется выражением
 где r — радиус кривизны оси изогнутого бруса в рассматриваемом сечении; Е — модуль продольной упругости материала бруса. В случаях малых деформаций кривизна приближённо выражается второй производной от прогиба V , а поэтому между координатами изогнутой оси и изгибающим моментом существует дифференциальная зависимость
 называемая дифференциальным уравнением оси изогнутого бруса. Решением этого уравнения определяется упругая линия балки (бруса).

  Расчёт бруса на И. с учётом пластических деформаций приближённо производится в предположении, что при возрастании нагрузки (изгибающего момента) первоначально в крайних точках (волокнах), а затем и во всём поперечном сечении возникают пластические деформации. Распределение напряжений в предельном состоянии имеет вид двух прямоугольников с ординатами, равными пределу текучести материала s , при этом кривизна бруса неограниченно возрастает. Такое состояние в сечении называется пластическим шарниром, а соответствующий ему момент является предельным и определяется по формуле

 в которой S>1 и S>2 — статические моменты сжатой и растянутой частей сечения относительно нейтральной оси.

  Лит. см. при ст. Сопротивление материалов .

  Л. В. Касабьян.

Рис. 2. Чистый изгиб прямого бруса в упругой стадии: а — элемент бруса; б — поперечное сечение; в — эпюра нормальных напряжений.

Рис. 1. Изгиб бруса: а — чистый: б — поперечный; в — продольный; г — продольно-поперечный.

Изгибание

Изгиба'ние (математическое), деформация поверхности, при которой длина каждой дуги любой линии, проведённой на этой поверхности, остаётся неизменной. Наглядный пример И. — свёртывание листа бумаги в цилиндр или конус (при условии, что бумага нерастяжима; поэтому длина каждой дуги любой линии, проведённой на бумаге, остаётся неизменной). Напротив, раздувание шарика, изготовленного из тонкой резиновой плёнки, представляет собой пример деформации, которая не будет И.