Логика | страница 65
2) Начинаем с того, о ком приведено больше данных. Это – Крокодиладзе. Он не пилот, не радист, не синоптик, не бортмеханик. Остается одно: Крокодиладзе – штурман.
Далее трижды упоминается Змеюкин. Теперь мы можем уверенно сказать, что он не штурман, не пилот, не синоптик и не радист. Следовательно, Змеюкин – бортмеханик. Гиппопотамян не штурман и не бортмеханик, но и не синоптик, не радист. Следовательно, Гиппопотамян – пилот. Муравьедский, как уже известно, не штурман, не бортмеханик, не пилот. Еще нам дано, что он не радист. Следовательно, Муравьедский – синоптик, а Утконосенко может быть только радистом.
3) Поставим себя на место одной из девиц и начнем думать. Допустим, одна подруга сидит слева от нас, а другая – справа. «У меня на голове перьев нет, – думает наша девица, – значит, левая подруга хохочет над правой, правая – над левой, а я – над ними обеими. Да, но если у меня на голове нет перьев, то моя подруга слева должна была бы понять, что мы смеемся над ней – а над кем еще можно смеяться, если у меня голова бесперая? Но тогда она перестала бы смеяться. Точно так же должна рассуждать и правая подруга. Итак: если бы моя голова была без перьев, то одна из подруг уже перестала бы смеяться. Этого нет: обе они хохочут. Следовательно, и моя голова украшена перьями».
И наша девица перестает смеяться, поняв, что смеются и над ней тоже. Аналогичное рассуждение может провести каждая из девиц, поэтому, надо полагать, этот смех скоро кончится.
4) Задача кажется очень сложной, поэтому, как советовал Декарт, попробуем упростить ее.
Допустим, падишах положил всего 1 изумруд. Тогда мудрец, которому достался этот изумруд, видел, что другим положили рубины. Но ему известно, что хотя бы один изумруд должен быть. Может он догадаться, у кого лежит этот единственный изумруд? Конечно! У него! Поэтому уже после первого приглашения падишаха он смело выходит вперед.
Падишах положил 2 изумруда. Мудрец видел, что одному из его коллег достался изумруд, а всем остальным – рубины. Что в его шкатулке, он не знает – это может быть как изумруд, так и рубин. Поэтому, когда падишах в первый раз приглашает выйти обладателей изумрудов, он не выходит. Но и тот мудрец, которому, как он видел, положили изумруд, тоже остался на месте! Почему? Если бы изумруд был только один, он бы вышел. Но он не вышел, значит, он видел еще один изумруд. У кого? У всех остальных мудрец видел только рубины, значит, этот второй изумруд у него! И когда падишах во второй раз приглашает выйти обладателей изумруда, он уверенно выходит вперед. Падишах положил 3 изумруда, два из которых мудрец видел у своих коллег. На первое и второе приглашения он не выходит. Но и его коллеги с изумрудами тоже не выходят! И вот тут-то он начинает думать: «Они не вышли потому, что видели третий изумруд. У кого? Только у меня!» И после третьего приглашения он смело выходит вперед. Итак, количество рубинов не имеет значения. Падишаху придется повторять свое приглашение столько раз, сколько он положил изумрудов.