Логика | страница 45



Силлогизм, в котором опущена и лишь подразумевается одна из частей – посылка или вывод, – называется энтимемой. В повседневной жизни мы пользуемся сокращенными силлогизмами – энтимемами. Это вполне естественно, но это также служит причиной многих ошибок в наших рассуждениях. Когда силлогизм представлен в полном виде, ошибку легко заметить. Но если какая-то его часть опущена, подразумевается, то именно в ней-то и может скрываться ошибка – либо подразумеваемая часть ложна, либо образует неправильный силлогизм. Допустим, я высокомерно заявляю:

«Этот человек глуп, так как он не знает логики!» Это энтимема.

Восстановим подразумеваемую посылку и запишем полный силлогизм:

Всякий человек, не знающий логики, глуп.

Этот человек не знает логики.

Этот человек глуп.

Сразу же становится видно, что подразумеваемая и восстановленная посылка ложна: далеко не каждый человек, не знающий логики, глуп. Многие люди, никогда не изучавшие логику, обладают тем не менее острым и проницательным умом. И наоборот, некоторые люди всю жизнь занимаются логикой, оставаясь при этом весьма недалекими личностями. Логика помогает нашему разуму, но все-таки разум нужно иметь – как нужно иметь ноги, чтобы тебе помогали костыли.

4) Произошла кража, и были задержаны трое подозреваемых. Один из них вор, который постоянно лжет; другой является соучастником и лжет лишь иногда; третий – честный человек, который никогда не лжет. Дознание началось с вопросов о профессии каждого из задержанных. Следователь получил такие ответы.

Щукин: я маляр, Карасев – настройщик роялей, а Окунев – дизайнер.

Карасев: я врач, Окунев – страховой агент. Что же касается Щукина, то, если вы его спросите, он ответит, что он маляр.

Окунев: Карасев – настройщик роялей, Щукин – дизайнер, а я – страховой агент.

По этим ответам следователь догадался, кто есть кто. Догадайтесь и вы!

Условно-категорический силлогизм

Если вы учились в школе, то, по-видимому, помните простую схему рассуждения, имеющую вид: «Если а, то в; если в, то с; следовательно, если а, то с». Скажем, в арифметике это рассуждение представлено принципом: если две величины порознь равны третьей, то они равны между собой. Такого рода рассуждения называются условными силлогизмами: здесь и посылки и вывод являются условными суждениями. Вот пример условного силлогизма, взятый из рассказа В. Билибина, русского писателя начала XX в.:

«Если бы на свете не существовало Солнца, то пришлось бы постоянно жечь свечи и керосин.