Логика | страница 40



Всякое умозаключение состоит из двух частей: те суждения, из которых мы исходим, на которые мы опираемся в умозаключении, называются его посылками, новое суждение, извлекаемое нами из посылок, называется выводом. Все умозаключения разделяются на две большие группы – дедуктивные и индуктивные.

Дедуктивными называют такие умозаключения, в которых вывод из посылок следует с необходимостью, т.е. если посылки умозаключения истинны, то вывод обязательно будет истинным. Например, если мы знаем, что все гасконцы являются французами и д'Артаньян является гасконцем, то отсюда мы можем сделать вывод о том, что д'Артаньян является французом. И этот вывод будет безусловно истинным.

Об индуктивных умозаключениях мы позднее поговорим особо (в разделе «Индукция»), а сейчас познакомимся с некоторыми простыми и наиболее употребительными дедуктивными умозаключениями. Мы интуитивно используем их в повседневных рассуждениях, но часто ошибаемся, ибо не отдаем себе отчета в том, что это такое.

1) Вдоль стен квадратного бастиона комендант разместил 16 часовых, по 5 человек с каждой стороны, так, как показано на рисунке:

Через некоторое время пришел полковник, выразил недовольство расстановкой часовых и переставил их так, что с каждой стороны оказалось по 6 человек. Однако после этого появился генерал. Он также выразил недовольство и переставил часовых таким образом, что с каждой стороны их оказалось по 7.

Как расположил часовых полковник? Как их расставил генерал? Общее число часовых остается одним и тем же.

Непосредственные умозаключения

Непосредственными называют умозаключения из одной посылки, представляющей собой простое суждение.

Превращение состоит в том, что мы в нашу посылку вставляем два отрицания – одно перед связкой, а другое – перед предикатом, и так получаем новое суждение. Умозаключения принято изображать так: сначала пишется посылка (или посылки), под ней проводится черта, обозначающая слово «следовательно», а под чертой пишется вывод. Пусть посылкой у нас будет общеутвердительное суждение, тогда превращение выглядит так:

Все S есть P

Ни одно S не есть не-P

Например, суждение «Все металлы электропроводны» превращается в суждение «Ни один металл не является неэлектропроводным».

Если в качестве посылки взять общеотрицательное суждение, то превращение будет выглядеть так:

Ни одно S не есть P

Bce S есть не-P

Например, суждение «Ни один мошенник не является честным человеком» превращается в суждение «Все мошенники являются нечестными людьми». Когда здесь мы вставляем «не» перед связкой, то перед ней получаются два «не». Мы устраняем их, опираясь на принцип: двойное отрицание эквивалентно утверждению.