Логика. Шпаргалка | страница 18



18. Определение

Слово «определение» произошло от латинского слова definition. В процессе общения, работы, просто повседневной жизни у человека нередко возникают проблемы с уяснением информации и передачей этой информации другим людям. Это связано с отсутствием или незнанием определения предмета, данного в имеющейся информации. Проще говоря, человек зачастую не понимает значения того или иного понятия. Разъяснить сложное понятие, выявить его суть не обязательно должен сам человек, который столкнулся с проблемой, но это может сделать человек, к профессии которого относится рассматриваемая проблема. Для осуществления толкования призвана логическая операция определения понятия.

Определение понятия— это логическая операция, направленная на выявление правильного значения термина или содержания понятия.

Определить понятие— значит полно раскрыть его содержание и отличить объем данного понятия от объемов иных понятий (т. е. определить предметы, входящие в понятие, и отделить их от других предметов).

Определение понятия может быть явным и неявным.

Явные определениясодержат определяемое и определяющее понятие, при их равных объемах. В этом виде для определения используется ближайший род и вид (видовое отличие), содержащие характерные признаки определяемого понятия.

Неявные определения. Определение через род и видовое отличие — это очень удобный и эффективный инструмент раскрытия содержания понятий.

Можно выделить несколько видов неявных определений: контекстуальное, индуктивное, остенсивное, через аксиомы.

Контекстуальное(от лат. contextus — «соединение», «связь») определение характеризуется тем, что оно позволяет выяснить суть, значение слова, смысла которого мы не знаем, через контекст, т. е. через относительно законченный отрывок информации, которая сопровождает данное слово, относится к нему и содержит его признаки.

Индуктивные определенияраскрывают смысл термина при помощи самого этого термина, через понятия, в которых содержится его смысл. Примером этого служит определение натуральных чисел. Так, если 1 — натуральное число и n — натуральное число, то 1 + n тоже есть натуральное число.

Остенсивное определениеустанавливает значение термина, прибегая к демонстрации предмета, обозначаемого этим термином. Такие определения применяются при раскрытии сущности предметов чувственного мира, другими словами, предметов, которые доступны для непосредственного восприятия.

Аксиома— это положение, которое принимается без логического доказательства в силу непосредственной убедительности. Определение через аксиомы основано на этом их качестве. Характеристика через аксиомы широко применяется в математике.