Закат Европы. Том 1: Образ и действительность | страница 111
145
уже тогда сумел бы предугадать кое-что из проблемы неэвклидовой геометрии, так как возражения против известной аксиомы о параллельных линиях *, сомнительная и неподдающаяся исправлению формулировка которой уже издавна создавала затруднения, близко подводили к решающему открытию. Поскольку для античного ума было само собой понятным рассмотрение исключительно близкого и малого, так же само собой понятно для нас рассмотрение бесконечного, выходящего за пределы видимого глазом. Все математические воззрения, изобретенные или заимствованные Западом, с полной неизбежностью были подчиняемы языку форм бесконечного, даже задолго до времени открытия дифференциального исчисления. Арабская алгебра, индийская тригонометрия, античная механика равно включались в анализ. Как раз самые «очевидные» положения элементарного счисления: например 2х2 = 4, с аналитической точки зрения становятся проблемами, разрешение которых достигнуто только путем выводов из учения о множестве, а в многих частностях не достигнуто еще до сего времени, что, без сомнения, в глазах Платона и его времени показалось бы безумием и признаком полного отсутствия математических способностей.
Можно в известном смысле трактовать геометрию алгебраически, или алгебру геометрически, т. е. устранять деятельность глаза или, наоборот, допускать его господство. К первому способу прибегли мы, ко второму греки. Архимед, касающийся в своем изящном вычислении спирали некоторых общих фактов, легших также в основу Лейбницевой методы определенного интеграла, тотчас же подчиняет свои приемы, кажущиеся при поверхностном наблюдении в высшей степени современными, стереометрическим принципам; индус в подобном же случае вполне естественным образом нашел бы тригонометрическую формулировку. (В настоящее время не представляется возможным установить, что из известной нам индийской математики является древнеиндийским, т. е. что возникло до Будды.)
13
Из основной противоположности античных и западных чисел вытекает столь же глубокая противоположность отношений
диаметром, приблизительно равным 470 миллионам расстояний Земли от Солнца, привело бы нас к принятию аналогичного Солнцу тела, которое представляется звездой средней величины.
* А именно, что через точку к прямой можно провести только одну параллельную линию, — положение, совершенно недоказуемое.
146
в которых находятся друг к другу отдельные элементы
каждого из этих комплексов. Взаимоотношение величин называется пропорцией, взаимоотношение отношений заключается в сущности функции. За пределами математики оба эти слова имеют глубокое значение для техники обоих соответствующих искусств — пластики и музыки. Если даже не принимать во внимание значение слова «пропорция» в применении к отдельной статуе, как раз наиболее типичные произведения античного искусства, статуя, рельеф и фрески, допускают увеличение или уменьшение масштаба, но слова эти не имеют никакого смысла в применении к музыке, искусству беспредельного. Достаточно вспомнить искусство гемм, сюжеты которого были уменьшениями пластики натуральной величины. С другой стороны, в области теории функций решающее значение имеет понятие трансформации групп, и всякий музыкант подтвердит, что аналогичные образования составляют существенную часть новейшего учения о композиции. Я ограничусь примером одной из наиболее тонких инструментальных форм XVIII в., а именно "tema con variazioni".