Закат Европы. Том 1: Образ и действительность | страница 102



поверхности и тела, является совершенно недоступным (стоит

только припомнить такие выражения, как е-?nvx, а1/ i).

Все глубокомысленные создания, быстро следующие одно

за другим, начиная с эпохи Ренессанса, как-то: мнимые и

комплексные числа, введенные Карданом уже в 1550 г., бес-

конечные ряды, получившие благодаря великому открытию

закона бинома Ньютоном в 1666 г. точное теоретическое

обоснование, открытие логарифмов в 1610 г., дифференцильной геометрии, определенного интеграла Лейбницем, открытие множества как новой числовой единицы, намеченное уже Декартом, новые процессы, как-то: неопределенного интегрирования, развертывание функций в ряды, даже в бесконечные ряды других функций, — все они являются столькими же победами над укоренившимся в нашей душе популярно-чувственным ощущением чисел, которое нужно еще было преодолеть в духе новой математики, имевшей своей целью осуществить новое мирочувствование. Не было еще ни одной другой культуры, которая относилась бы с равным уважением к созданиям иной, давно погибшей культуры и давала такой простор в своей науке ее влияниям, как это делала западноевропейская по отношению к античной. Прошло много времени, пока мы нашли в себе смелость думать своим умом. На первом плане всегда лежало стремление во всем сравняться с античностью. Однако каждый шаг в этом направлении был удалением от намеченного идеала. Поэтому история западноевропейской науки представляет собою картину непрерывной эмансипации от чуждого и освобождения, к которому никто не стремился, но которое вынужденно вырастало из глубины бессознательного. Таким образом, развитие новой математики сложилось в тайную, долгую, наконец, победоносную борьбу против понятия величины.

10

Антикизирующие предрассудки помешали подобающим

образом изобразить западноевропейское число. Усвоенный на-

ми в математике язык знаков ложно отражает действительное

положение вещей, и ему, главным образом, приходится при-

писать то обстоятельство, что даже до настоящего времени

среди математиков распространено воззрение, будто числа

суть величины, а наш способ письменного изображения, несомненно, основан на этой точке зрения.


135

Однако новое число есть не эти отдельные знаки, служащие для выражения функций (х,? 5), но сами функции как

единицы, как элементы, как изменяющиеся отношения, не

допускающие никакого заключения в оптические границы.

Для них была бы нужна новая символика, независимая в своем построении от античных воззрений.