Звуки и знаки | страница 26
Первым найти такую формулу словаря попытался уже упоминавшийся нами Дж. Ципф. Связь между частотой употребления слова и его рангом, то есть номером в списке, получила наименование «закон Ципфа». Частотные словари представляют собой обычно списки слов, которые расположены по их рангу: первым идет слово, которое встречается чаще всего, затем второе по встречаемости и т. д. Однако выяснилось, что «закон Ципфа» не универсален. Были попытки описать распределение слов в тексте с помощью специальных формул теории вероятностей — так называемого нормального распределения, распределения Пуассона, распределения Маркова— Колмогорова и т. д. (причем, как показала советская исследовательница М. Е. Каширина, распределение Маркова — Колмогорова является наиболее общим и универсальным для распределения любых языковых единиц).
В теории вероятностей известны десятки законов распределения случайной величины. Задача статистической лингвистики — выбрать тот закон, который лучше всего отражает именно реалии языка, а не какие-либо иные закономерности.
Вот характерный пример, заимствованный нами из учебника «Математическая лингвистика», написанного Р. Г. Пиотровским, К. Б. Бектаевым и А. А. Пиотровской. И наше обычное поведение, и функционирование техники, и порождение речи — в той или иной степени вероятностны. Садясь в самолет или автомобиль, мы уверены, что все будет хорошо. Составляя словарь для перевода русских текстов по математике, мы не станем включать в него слово дядя или словосочетание бубновый туз.
И все-таки несчастные случаи, увы, бывают, какова бы ни была их вероятность. В книгах по математике можно найти и бубнового туза и даже дядю (так, в труде «Теория вероятностей» Е. С. Вентцель читатель может обнаружить цитату из начала «Евгения Онегина», знаменитое «Мой дядя самых честных правил…»). Так что же, отменить автомобили и не летать на самолетах? А в математические словари наряду со словом дядя включать еще и тетю, и бабушку, и названия игральных карт и вообще все сотни тысяч русских слов? Разумеется, нет.
Если сравнить астрономически большое число полетов и автомобильных пробегов с числом несчастных случаев, станет ясно, насколько мала их вероятность. И вероятность всех этих дядей и бубновых тузов в математических трактатах мала — хотя авторы их могут и процитировать Пушкина, и воспользоваться известными всем игральными картами, иллюстрируя пример случайного выбора или комбинаторных сочетаний.