Краткий курс логики: Искусство правильного мышления | страница 56



Все умозаключения делятся на непосредственные и опосредованные. В непосредственных умозаключениях вывод делается из одной посылки. Приведены примеры таких умозаключений:

Все цветы являются растениями. Некоторые растения являются цветами. Верно, что все цветы являются растениями. Неверно, что некоторые цветы не являются растениями.

Нетрудно догадаться, что непосредственные умозаключения представляют собой уже известные нам операции преобразования простых суждений и выводы об истинности простых суждений по логическому квадрату. Первый приведённый пример непосредственного умозаключения является преобразованием простого суждения путём обращения, а во втором примере по логическому квадрату из истинности суждения вида A делается вывод о ложности суждения вида O.

В опосредованных умозаключениях вывод делается из нескольких посылок. Например:

Все рыбы – это живые существа. Все караси – это рыбы. Все караси – это живые существа.

Опосредованные умозаключения делятся на три вида:

1. Дедуктивные умозаключения (дедукция) (от лат. deductio – выведение) – это умозаключения, в которых из общего правила делается вывод для частного случая (из общего правила выводится частный случай). Например:

Все звёзды излучают энергию. Солнце – это звезда. Солнце излучает энергию.

Как видим, первая посылка представляет собой общее правило, из которого (при помощи второй посылки) вытекает частный случай в виде вывода: если все звёзды излучают энергию, значит, Солнце тоже её излучает, потому что оно является звездой. В дедукции рассуждение идёт от общего к частному, от большего к меньшему, знание сужается, в силу чего дедуктивные выводы достоверны, т. е. точны, обязательны, необходимы. Посмотрим ещё раз на приведённый пример. Мог бы из двух данных посылок вытекать иной вывод, кроме того, который из них вытекает? Не мог!

Вытекающий вывод – единственно возможный в этом случае. Изобразим отношения между понятиями, из которых состояло наше умозаключение, кругами Эйлера.

Объёмы трёх понятий: «звёзды» (З); «тела, излучающие энергию» (Т); «Солнце» (С), схематично расположатся следующим образом (рис. 33):

Если объём понятия «звёзды» включается в объём понятия «тела, излучающие энергию», а объём понятия «Солнце» включается в объём понятия «звёзды», то объём понятия «Солнце» автоматически включается в объём понятия «тела, излучающие энергию», в силу чего дедуктивный вывод и является достоверным.

Несомненное достоинство дедукции, конечно же, заключается в достоверности её выводов. Вспомним, известный литературный герой Шерлок Холмс пользовался дедуктивным методом при раскрытии преступлений. Это значит, что он строил свои рассуждения таким образом, чтобы из общего выводить частное. В одном произведении, объясняя доктору Ватсону сущность своего дедуктивного метода, он приводит такой пример. Около убитого полковника Морена сыщики Скотланд-Ярда обнаружили выкуренную сигару и решили, что полковник выкурил её перед смертью. Однако, он (Шерлок Холмс) неопровержимо доказывает, что полковник Морен не мог выкурить эту сигару, потому что он носил большие, пышные усы, а сигара выкурена до конца, т. е., если бы её курил полковник Морен, то он непременно подпалил бы свои усы. Следовательно, сигару выкурил другой человек. В этом рассуждении вывод выглядит убедительно именно потому, что он дедуктивный: из общего правила: