Краткий курс логики: Искусство правильного мышления | страница 23
2. Деление должно быть полным, т. е. надо перечислить все возможные результаты деления: суммарный объём всех результатов деления должен быть равен объёму исходного делимого понятия.
Например, деление: «Учебные заведения бывают начальными и средними», – является неполным, т. к. не указан ещё один результат деления – «высшие учебные заведения». Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления.
В этом случае можно употреблять следующие понятия: и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя не перечисленные результаты деления. Например: «Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей».
3. Результаты деления не должны пересекаться, т. е. понятия, представляющие собой результаты деления, должны быть несовместимыми, их объёмы не должны иметь общих элементов (на схеме Эйлера круги, обозначающие результаты деления, не должны соприкасаться). Например, в делении: «Страны мира делятся на северные, южные, восточные и западные», допущена ошибка – пересечение результатов деления. На первый взгляд, приведённое деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку, надо рассуждать так. Возьмём какую-нибудь страну, например Канаду, и ответим на вопрос, является ли она северной. Конечно, является, т. к. расположена в северном полушарии Земли. А является ли Канада западной страной?
Да, потому что она расположена в западном полушарии. Таким образом, получается, что Канада – одновременно и северная, и западная страна, т. е. она является общим элементом объёмов понятий «северные страны» (С) и «западные страны» (З), а значит, эти понятия пересекаются. То же самое можно сказать и относительно понятий «южные страны» (Ю) и «восточные страны» (В). На схеме Эйлера результаты деления из нашего примера будут располагаться так (рис. 15):
Вспомним, каждая классификация построена таким образом, что любой элемент, попадающий в одну её группу (часть, вид), ни в коем случае не попадает в другие. Это и есть следствие непересечения результатов деления (их взаимоисключения).
4. Деление должно быть последовательным, т. е. не допускающим пропусков и скачков. Рассмотрим следующее деление: «