Десять «горячих точек» в исследованиях по искусственному интеллекту | страница 4
Ясно, что механизмы оправдания, связанные с искажением весов правдоподобия, накопленных в данной предметной области знаний (включая и отторжение некоторых знаний), нужно изучать и учитывать при заполнении баз знаний и их объединении. Но как это делать? Вопрос остается открытым и сейчас. В ближайшее десятилетие на него надо найти конструктивный ответ, иначе интеллектуальные системы в своем развитии не сделают следующего важного шага.
3. Порождение объяснений.
Различие в механизмах поиска решений у человека, специалиста по решению определенного класса задач и у интеллектуальной системы приводит к появлению эффекта непонимания. Видя окончательный результат деятельности интеллектуальной системы, специалист не может оценить степень его достоверности (даже если система одновременно с решением выдает вычисленную ею такую оценку). Процесс «верить – не верить» не может привести к какому-либо разумному результату, если нет какой-то дополнительной информации. Эта информация, начиная с первого поколения экспертных систем, выдается специалисту по его требованию в виде объяснения.
Объяснение (более точно было бы говорить об обосновании, но термин «объяснение» прочно прижился в искусственном интеллекте) может быть различным. Наиболее распространены как-объяснения и почему-объяснения. При как-объяснении система выдает пользователю информацию о процедуре получения решения, например, выдает ему всю трассу движения по дереву вывода. При почему-объяснении система включает в текст объяснения те основания, которые были использованы ею в процессе поиска решения. Другие типы объяснений (что-объяснения, зачем-объяснения и т.п.) пока в интеллектуальных системах практически не используются.
Проблема объяснения связана с решением задачи о том, как его построить. В начальный период развития экспертных систем объяснение порождалось жесткими процедурами, связанными с наличием априорно заданного сценария объяснения, заполняемого конкретными сведениями в процессе поиска решения. Такой подход в какой-то мере годится для как-объяснений и несколько хуже подходит для почему-объяснений. Но он совершенно непригоден при необходимости порождения объяснений иных типов.
Ясно, что проблема генерации объяснений связана с наличием в памяти интеллектуальной системы концептуальных моделей предметных областей и энциклопедических знаний об особенностях этих областей. Для порождения объяснений нужны базы знаний энциклопедического типа.