Пилотируемые полеты на Луну | страница 58
Процесс проектирования упрощается использованием программы для вычислительной машины, которая строит амплитудные и фазовые характеристики D(ju)Gr(ju) в функции
?=(2/T)tg^-1u (22.10)
В результате получаются графики D*(j?) G*r(j?), которые модифицируются с помощью функций M(j?) и Н(j?) для определения разомкнутой частотной характеристики аппарата как твердого тела
G0r(j?)=D*(j?) M(j?) G*r(j?)Н (j?) (22.11)
Контур компенсации эксцентриситета вектора тяги
Влияние контура компенсации эксцентриситета вектора тяги на характеристики разомкнутой цепи ЦАП по конструктивным соображениям ограничивается областью ниже 2 рад/сек. Это значительно ниже частоты квантования интегратора этого контура, равной 2 гц (12,56 рад/сек), и частоты квантования ЦАП (25 гц для основного блока и 12,5 гц для корабля Apollo). Можно показать, что влияние указанных частот квантования пренебрежимо мало в диапазоне частот до 2 рад/сек, и контур компенсации эксцентриситета вектора тяги может быть аппроксимирован передаточной функцией непрерывного сигнала вида
где Км – коэффициент усиления контура компенсации эксцентриситета вектора тяги;
Тм – постоянная времени низкочастотного фильтра.
Контур управления траекторией полета
Динамика контура управления траекторией полета зависит от времени до окончания работы ЖРД, tgo. Для больших значений tgo этой зависимостью можно пренебречь при выводе передаточных функций контура управления траекторией полета. Эти функции даже в приближенном виде весьма полезны для понимания влияния контура управления траекторией полета на работу ЦАП в целом.
Контур управления траекторией полета выполняет следующие операции.
1. Приращения скорости, измеряемые акселерометром, накапливаются и вычисляется текущая скорость V;
2. Каждые 2 сек вычисляется разность Vg между требуемой скоростью Vr и текущей скоростью V.
3. Каждые 2 сек находится векторное произведение Vg и ?V, где ?V – изменение скорости в течение последних 2 сек.
4. Результат векторного произведения нормируется по отношению Vg и ?V и затем умножается на коэффициент усиления Ksteer для получения вектора команды скорости ориентации.
5. Вектор угловой скорости ориентации преобразуется п-систему координат, связанных с аппаратом, и определяются команды для угловых скоростей тангажа и рыскания.
6. Управляющие команды по угловой скорости аппарата умножаются на период квантования ЦАП Т, чтобы получить-приращения, которые подаются в ЦАП через каждые Т сек.