Затем OCR-система анализирует (определяет блоки распознавания, выделяет в тексте строки и отдельные символы) изображение и начинает распознавать каждый его символ.
Целостное целенаправленное адаптивное распознавание
Распознавание печатного материала осуществляется на основе так называемой технологии «целостного целенаправленного адаптивного распознавания», которая базируется на трех принципах:
• Целостность.
• Адаптивность.
• Целенаправленность.
В соответствии с этими принципами OCR-система сначала выдвигает гипотезу относительно объекта распознавания (символе, части символа или нескольких склеенных символах), а затем подтверждает или опровергает ее, пытаясь последовательно обнаружить все структурные элементы и связывающие их отношения, при этом в каждом структурном элементе можно выделить определенные части, имеющие значение для человеческого восприятия:
• отрезки дуги кольца точки.
Целостность
Распознаваемый объект воспринимается OCR-системой в качестве целого посредством «значимых» элементов и отношений между ними.
Целенаправленность
Процесс распознавания проходит через выдвижение гипотез и целенаправленной их проверке. Это означает, что OCR-система проводит поиск, учитывает предыдущий контекст и на основе этого распознает даже разорванные и искаженные печатные символы.
Адаптивность
Под адаптивностью подразумевается способность OCR-системы к самообучению. Следуя этому принципу, OCR-система подстраивается к распознаваемому материалу на базе полученного «положительного» опыта.
В итоге в рабочей среде OCR-системы появляется распознанный текст, который можно корректировать и сохранять в том или ином формате.
Глава 19.
Системы распознавания текстов в офисе
Основное назначение пакетов оптического распознавания символов (Optical Character Recognition, OCR) состоит в анализе растровой информации (отсканированного символа) и присвоении точечному изображению символа фиксированного электронного значения. Грубо говоря, OCR-система определяет, какой букве соответствует та или иная картинка.
Отечественные разработчики программного обеспечения действительно преуспели в сфере систем распознавания. Между тем проблемы, которые встают перед разработчиками подобных систем, весьма нетривиальны. В зависимости от качества отсканированного изображения приходится разделять склеившиеся символы, домысливать творения матричного принтера, разбивать (фрагментировать) текст на блоки, догадываться о значении не пропечатавшихся символов, настраиваться (через систему обучения) на «почерк» печатающего устройства или пишущей машинки, узнавать широкую гамму шрифтов, начертаний и других параметров символов. Кроме того, современные системы оптического распознавания должны уметь сохранять форматирование исходных документов, присваивать в нужном месте атрибут абзаца, сохранять таблицы, оставлять в покое графику (нераспознаваемые картинки)…