Компьютерра, 2007 № 33 (701) | страница 11
Исследовательская группа из Национального университета Чоннам создала микроробота, способного длительное время функционировать внутри человеческого организма. Хотя роботом это устройство можно назвать с большой натяжкой. Оно представляет собой параллелепипед с шестью «конечностями» (три коротких, по 400 мкм, и три длинных, по 1200 мкм). Вся конструкция сделана из эластичного кремнийорганического полимера – полидиметилсилоксана, который отличается хорошей биосовместимостью. Главной особенностью робота является его «двигатель», в качестве которого выступает группа клеток ткани сердца (кардиомиоцитов) крысы. Синхронно сокращаясь, эти клетки приводят в движение конечности робота, заставляя его плыть в выбранном направлении. Клетки "сердечного мотора" черпают энергию прямо из "окружающей среды", питаясь глюкозой. Никаких дополнительных систем управления робот не имеет. Средняя скорость его движения в организме, по замерам корейцев, составляет 100 мкм/с.
Такие роботы, говорят разработчики, могут использоваться для уничтожения тромбов в артериях. Аппарат способен нести полезную нагрузку в виде рассасывающего препарата, который он выпустит, добравшись до тромба. ЕГ
Новые важные результаты в области перспективных компьютерных технологий масштаба отдельных атомов и молекул недавно получены в исследовательских центрах корпорации IBM. И хотя эти достижения еще слишком далеки от практических приложений, возможно, именно они будут определять направления дальнейших исследований и разработок на годы вперед.
В Альмаденском центре в Калифорнии впервые удалось измерить ориентацию и силу магнитного поля атома железа или марганца, который помещали на тонкую подложку из нитрида меди. Этот результат демонстрирует, что один бит информации, по крайне мере в принципе, можно хранить с помощью одного-единственного атома магнитного вещества. Однако этот магнитный атом с ненулевым спином должен быть окружен определенным набором немагнитных атомов, а его намагниченность удается сохранять только благодаря взаимодействию атома с окружением. Тем не менее таким образом можно преодолеть суперпарамагнитный предел и достичь плотности записи информации на три порядка большей, чем у современных винчестеров. Дело в том, что в обычном слое магнитного вещества соседние магнитные атомы взаимодействуют друг с другом, что приводит к образованию магнитных доменов, в которых спины всех атомов ориентированы одинаково. И эти магнитные домены не могут быть слишком маленькими, иначе они становятся неустойчивыми и их намагниченность разрушается тепловыми флуктуациями. Теперь ясно, что один магнитный атом или кластер атомов в немагнитном окружении способен обойти эту трудность.