Компьютерра, 2007 № 31 (699) | страница 28




Для этого Клейн сосредоточился не на отдельных задачах, а на чем-то, что по праву можно было бы назвать духом математики. Этот дух, наряду со старым Словом, должен был войти в души учащихся, подготовив их к удивительности странного мира. Изложению этого духа были посвящены лекции, прочтенные Клейном в 1907/08 учебном году в Геттингене будущим учителям математики средних школ и позже изданные в виде книги "Elementarmathematik vom Hoeheren Standpunkt" ("Элементарная математика с точки зрения высшей" в русском переводе). Это была революция, куда сильнее изменившая мир, нежели толпы на площадях и побоища в вестибюлях дворцов.


В начале книги Клейн говорил, как следует знакомить детей с понятием числа. Для этого он привлек философские труды Канта, строки «Фауста», работы крупнейших математиков Гамильтона, Пеано, отца теории множеств Кантора. Серьезный подход к ДУХУ математики требовал безукоризненного определения самых элементарных понятий.


Затем Клейн переходил к функциям. Именно это понятие ученый закладывал в основу курса математики, будучи убежден, что оно должно быть усвоено как можно раньше, что через него следует осуществлять преподавание и алгебры, и геометрии.

Изучение функций, их возрастания и убывания, должно приводить учащихся к понятию производной. И тоже чем раньше, тем лучше. По мнению Клейна, начала математического анализа следует включить в программу средней школы. Вспомним – Клейн был учеником последнего равно крупного физика и математика, сам много работал в области приложений математики и хорошо понимал, как важны элементы анализа при изучении естественных дисциплин.


Но наряду с широким применением строгих математических понятий Клейн уделял огромное значение примерам, взятым из повседневной жизни, – для иллюстрации понятий математики и для демонстрации мощи математических приемов в решении практических задач. Дух математики должен был приходить не только из чистого разума, но и из вполне конкретных проблем, и воспарять не только к вершинам платоновских идей, но и к тем затянутым облачками небесам, в которые карабкались цепеллины и первые аэропланы. Блистательным примером тому была маленькая главка "Униформизация нормальных уравнений посредством трансцендентных функций" [Феликс Клейн, "Элементарная математика с точки зрения высшей". – М., 1987], где с поразительным изяществом на основе теории функций комплексных переменных, в которую и сам Клейн внес огромный вклад, дается способ решения уравнений, вызывавших головную боль и скрежет зубовный у поколений школяров.