Компьютерра, 2007 № 29 (697) | страница 43
Наиболее уместным решением в данном случае является использование класса математических моделей, известных как "клеточные автоматы", которые активно применяются, например, в газодинамике. Степанцов считает, что моделирование ситуаций с активным участием людей на данном этапе научного прогресса практически невозможно, так как исследователю приходится иметь дело с критически большим количеством скрытых факторов. Однако по мере увеличения количества участвующих в модели людей роль рациональных и иррациональных факторов, описывающих поведение отдельного человека, снижается, и поведение группы может быть описано вероятностным образом, то есть спрогнозировано. Это характерная иллюстрация действия закона больших чисел. Даже если исследователь не учитывает причин, которые могут заставить индивидуума действовать нестандартным образом, его поведение вряд ли скажется на действиях общей группы.
Клеточные автоматы – дискретные системы, то есть параметры, описывающие пространство и время, принимают значения из конечного небольшого набора. Клеткой называется узел пространственной решетки, ближайшие ячейки называются соседями. Каждому узлу присваивается некоторый набор значений, описывающий его текущее состояние, которое может изменяться по заданным правилам в зависимости от состояния соседей.
В данном случае клеточный автомат имеет два состояния клетки (наличие/отсутствие в ней человека) и учитывает две составляющие движения: хаотичное и направленное. Интересно, что данные условия схожи с уже существующей моделью, описывающей диффузионные процессы (окрестность Марголуса). Степанцов модифицировал правила этой модели, добавив к диффузионной составляющей движения направленную и представив движение частицы (человека) как суперпозицию случайного и направленного перемещения.
Далее была программно реализована работа клеточного автомата и исследованы некоторые модельные задачи. Так, на рис. 1 отражена ситуация, в которой люди выбегают из узкого выхода. При этом измеряется временная зависимость плотности числа людей до сужения и после. В данном случае плотность в широкой части прохода выше, а значит, данный выход может спровоцировать затор. Этого не произошло при изменении конфигурации прохода (рис. 2). Таким образом, модель позволяла описывать возникновения эффекта пробки и "отрицательной вязкости" (более быстрое движение у границ прохода).
Впоследствии Степанцов дважды вносил изменения в свою модель – в 1999 и 2003 гг. Главной целью доработки был учет решений человека, который стремится выбрать оптимальный путь к выходу, даже находясь в толпе. Раннюю версию исследователь называл моделью "слепых котят", так как выбор способа движения в заданном направлении отдавался на волю случая.