Компьютерра, 2006 № 20 (640) | страница 44
Янг и Миллс предложили общий вид лагранжианов, которые должны были привести к успеху. На основе теории Янга-Миллса сначала были объединены электрическая и слабая теории, а затем Мюррей Гелл-Манн (Murray Gell-Mann) построил теорию сильного взаимодействия. В этой теории, принесшей Гелл-Манну Нобелевскую премию, для объяснения наблюдаемых эффектов появились кварки — частицы с дробным электрическим зарядом, из которых состоят протоны, нейтроны и другие вовсе не элементарные частицы. Теория сильного взаимодействия получила название квантовой хромодинамики[Термин «хромодинамика» может показаться странным — какой может быть цвет (греческое chroma — цвет, краска) у элементарных частиц? Тем не менее свойства элементарных частиц порой носят неожиданные названия. Кварки, например, делятся на шесть типов, которые принято называть ароматами; ароматы отличаются квантовыми числами, среди которых не только заряд, но и странность и очарование. А цвет — это характеристика не только кварков, но и глюонов — частиц, которые, по мнению физиков, реализуют взаимодействие между кварками. У них еще и антицвет бывает, но в это мы углубляться не будем].
Чтобы теория могла описывать сильное взаимодействие, она должна обладать тремя свойствами, которые совершенно не свойственны классическим теориям:
mass gap («щель в спектре масс», ограничение снизу на «энергетический спектр»);
кварковый конфайнмент: кварки не могут «выбраться» за пределы элементарных частиц;
определенные нарушения симметрии (подробности здесь опускаем).
Многочисленные эксперименты — как in vivo, так и in silicio["In vivo" означает «в живом» — это стандартный биологический термин для экспериментов в живой природе, а не в искусственных средах. Однако в последние десятилетия стали все более популярны компьютерные эксперименты. Для их обозначения биологи придумали меткий термин «in silicio» — «в кремнии»] — показали, что квантовая хромодинамика этими свойствами обладает. Однако математически это не доказано. Математически строгое построение квантовой теории поля, обладающей этими свойствами, и составляет предмет нашей сегодняшней задачи на миллион[Говоря более строгим языком, задача состоит в том, чтобы для каждой компактной простой калибровочной группы построить квантовую теорию Янга-Миллса в четырехмерном пространственно-временном континууме, обладающую свойством mass gap, — иными словами, такую теорию, спектр гамильтониана H которой (в квантовом случае аналог классического лагранжиана называется гамильтонианом) был бы отделен от нуля].