Компьютерра, 2006 № 20 (640) | страница 41
Автор: Сергей Николенко
Развитие математики всегда шло рука об руку с развитием физики: то наши знания о природе требовали новых, еще не разработанных математических аппаратов, то новая математика, поначалу представляющаяся лишь изящным упражнением для ума, неожиданно оказывалась необходимой для развития физических теорий. Заключительная в нашем цикле публикаций «задача на миллион» относится к первой из этих категорий.
В античном мире не было проблем с соответствием между математическим и физическим аппаратами: материалистические теории древних греков были наивными, умозрительными и математического обоснования не требовали, а вершина математической мысли греков — идеи Архимеда — к физическим теориям отношения не имели и предназначались для нужд геометрии.
Однако уже начиная с Нового времени, математика и физика не могут жить друг без друга. В самом буквальном смысле: Ньютон разработал матанализ именно как математический аппарат для своих физических открытий и даже философских идей. Кстати, сэр Исаак был очень недоволен Лейбницем, который сделал анализ понятным, доступным и алгоритмическим, — по мнению Ньютона, высшая математика должна была быть эзотеричной[Я уж молчу про анализ Ферма, основанный на алгебраической бесконечно малой, о котором нужно рассказывать отдельно]. Ньютон, по обыкновению того времени, зашифровал свое «научное завещание» в латинской анаграмме. Единственная разумная расшифровка этой анаграммы выглядит примерно так: «Полезно решать дифференциальные уравнения». Следующие два века действительно прошли под знаком математического анализа и дифференциальных уравнений — мир представлялся французским математикам, лидерам тогдашней науки, гигантской системой дифференциальных уравнений. Стоит только решить ее, и развитие Вселенной будет предсказано точно и достоверно. К этому мировоззрению относится и гордое лапласовское «В этой гипотезе я не нуждался» в ответ на замечание Наполеона о том, что система мира Лапласа не предусматривает Бога.
Во второй половине девятнадцатого века маятник качнулся в другую сторону. Развитие математики несколько опередило развитие физических теорий. Самый яркий и широко известный пример — неевклидовы геометрии Лобачевского, Бойяи, Гаусса и позднее примкнувшего к ним Римана. Поначалу эти теории всего лишь закрыли вопрос с пятым постулатом Евклида[Пятый постулат равносилен утверждению, что через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной. Евклид сформулировал его запутанно и многословно (в отличие от других, кристально ясных постулатов). Многие математики потратили кучу сил и времени на попытки вывода пятого постулата из остальных постулатов евклидовой геометрии], продемонстрировав, что он не выводится из остальных аксиом, — результат интересный, но вряд ли сам по себе имеющий хоть какое-то прикладное значение. Но впереди был Эйнштейн, который, опираясь на работы классика геометрии Минковского, показал, что Вселенная, на самом деле, имеет переменную кривизну, а школьная евклидова геометрия, увы, всего лишь абстракция.