Общественная организация человечества (вычисления и таблицы) | страница 14
20. Среднее расстояние от центра (поселка) какой-нибудь территории до средины се земли или до следующего низшего поселка, например от окружного до губернского, от губернского до уездного и т.д. Это число очень интересно. Выборные, например, селами периодически путешествуют из своих сел (например, каждый месяц) до своей волости. Оказывается в среднем им надо проезжать немного более трех верст. Но уже выборные от волостей проезжают 17 верст до уездного поселка. Выборные высших разрядов перемещаются на 87 верст, 422 и даже до 2000 верст. Последнее число относится к выборам от округов, переезжающих в верховное общество шестого разряда. Кажется, подобные путешествия не затруднительны, если они совершаются даже каждый месяц (время полномочия устанавливается выбирающими обществами). Член второго общества может совершать свои путешествия пешочком, третьего - свои 17 верст - на велосипеде, четвертого - 87 верст на автомобиле, пятого - 422 верст на пароходе, железной дороге, аэростате, шестого - на аэроплане. Даже на последнее довольно 10 часов, или одной ночи. (На практике, пока еще па-селение Земли редко, расстояния между округами могут быть гораздо больше, ввиду рассеяния их по всей Земле. Также и другие расстояния предполагают смежность территорий.)
21. Число первичных ячеек или разных сел в разных территориях, т.е. в уезде, губернии, округе и на всей Земле.
22. То же, только не сел, а волостей.
23. То же, только не волостей, а уездов.
24. То же губерний.
25. То же округов. Таким образом, последний столбец (справа, 21-25) определяет число разных территорий на всей Земле. Именно: 4 миллиона сел, 376 тыс. волостей, 13000 уездов, 520 губерний и 23 округа.
Пояснением общественного устройства Земли служат другие мои неизданные труды.
Распределение поселков и территорий можно делать и на других основаниях. Так, можно допустить, что отношение численности населений и выборов ближайших по разряду поселков составляет определенное число. Например, 3/2. Это значит, что население поселка какого-нибудь разряда всегда больше предыдущего в 1,5 раза. Можно взять и большее и меньшее число, но все это будет также не обосновано, как и принятые ранее условия.
Вот таблица (91) отношений численности разрядов при разных условиях. Даю круглые числа.
1 2 3 4 5 6
1 1,3 1,7 2,2 2,9 3,7
1 1,5 2,3 3,4 5,1 7,6
1 2 4 8 16 32
Тут первый ряд выражает прежние условия. Это арифметическая прогрессия. Все другие ряды - прогрессии геометрические, знаменатель отношений которых: 1,3, 1,5 и 2. Тут предполагается, что способность изучения возрастает при переходе к следующему разряду выборных в определенное число раз.