Вальсируя с медведями | страница 57



Предположим, что вы – бегун. Вы честно бегаете ежедневно, но время пробежки варьируется в зависимости от других ваших дел. Ваша ежедневная тренировка занимает от 15 минут до 1 часа. Вы ведете записи и обнаруживаете, что совершенно независимо от расстояния (в указанном временном диапазоне) скорость бега варьируется от 6,5 до 9 миль/час. Записи вы ведете так давно, что накоплена вполне приличная статистика:



Реальные данные, возможно, были в форме гистограммы, а то, что мы показываем здесь, является огибающей кривой, примерно повторяющей эту гистограмму. Это похоже на диаграмму неопределенности, ею она и является. На самом деле это можно представить в двух обычных формах, как показано ниже:




Это распределение прошлых результатов можно рассматривать как представление неопределенности в отношении того, как быстро вы побежите в следующий раз.

Предположим, что ваша скорость является не единственной неопределенностью, влияющей на следующий забег. Предположим, вы решили побежать по дорожке неизвестной длины: по периметру площадки для гольфа. Поскольку вы никогда раньше там не бегали, вы совсем не уверены, сколь длительным будет забег. У вас есть какие-то данные, полученные от Профессиональной ассоциации гольфа, о периметре площадки, из которых следует, что это расстояние может быть от двух до четырех миль, причем наиболее вероятна длина периметра примерно в 2,8 мили. Это тоже можно изобразить как распределение:




Эти данные более «зернистые» из-за недостаточного их количества.

Итак, сколько займет ваш следующий забег? Вы помните, что время – это расстояние, деленное на скорость (мили расстояния, поделенные на мили/час). Если расстояние и скорость были бы фиксированными величинами, то нам предстояло бы элементарное арифметическое действие, но в данном случае, оба параметра являются неопределенными, меняющимися в рамках определенного диапазона. Это обеспечивает наличие неопределенности также и в результате:



В целях выведения результирующей кривой, составленной из двух входных кривых, нам понадобилось бы использовать метод из области интегрального исчисления. Но такая «крутая» математика непозволительна в этой главе. Что же нам делать?

Вместо того чтобы строить кривую, мы намерены создать ее приближенный вариант путем моделирования ряда последовательных забегов. Для этого нам понадобится построить инструмент, который даст ряд выборочных данных из неопределенности любого вида и в то же время гарантирует соблюдение формы этой неопределенности по времени. Такой инструмент в применении к диаграмме скорости будет выглядеть так: