Компьютерра, 2005 № 36 (608) | страница 32



Сейчас уже понятно, что тогдашние пакеты просто обогнали свое время. Разработчики переоценили как собственные технологии, так и желание пользователей избавиться от клавиатуры. Пользователи, конечно, хотели бы иметь возможность диктовать тексты, но снижение скорости набора в несколько раз оказалась слишком дорогой ценой.

Потерпев фиаско на рынке домашних приложений, системы распознавания нашли применение на корпоративном рынке, благо задачи, волнующие корпоративных заказчиков, решить было проще. Там, конечно, разработчиков поджидали свои трудности - например, при проектировании приложений для колл-центров нужно было отдельно разбираться с шумами на линии (решается это предварительной «очисткой» сигнала - решение неидеальное и не во всех случаях работающее, однако другого пока нет). Но в целом, повторюсь, корпоративные задачи решать было проще, поскольку распознавание можно было «заточить» под конкретное применение, повысив эффективность распознавания за счет отказа от универсальности.

Сегодня системами распознавания речи вполне можно пользоваться без ущерба для психики, хотя очевидно, что оценка качества распознавания в 90-98% (а многие производители не стесняются указывать такие цифры) является все же завышенной (или, скажем так, верной для идеальных условий, одним из которых является идеальный диктор).Опытного юзера вряд ли устроит скорость практически полезной диктовки (сама диктовка плюс последующая правка), но неопытный или лишенный физической возможности набирать текст на клавиатуре человек уже не считает, что заокеанские программисты над ним издеваются. Нет никаких сомнений в том, что качество распознавания с каждым годом будет расти, и оценка Билла Гейтса, который предположил, что к 2010 году появятся системы, «понимающие» речь не хуже человека, кажется вполне реальной. Конечно, с определенными оговорках. Речь идет о количественных, а не качественных изменениях. Есть вещи, которые современные системы распознавания делать просто не умеют и без смены подхода вряд ли научатся.

Если разработчики, занимающиеся синтезом речи, начинали с копирования человеческого голосового аппарата и только потом разработали систему компилятивного синтеза, «собирающую» нужные слова из обрывков фонем, то системы распознавания речи имеют мало общего с тем, как распознает речь человеческий мозг. Скрытые модели Маркова, которые стали применять для распознавания в 1970-е гг., оказались эффективным средством для поиска нужных фонем, но они не являются панацеей и не способны решить все проблемы распознавания речи. Собственно говоря, у современной науки весьма смутные представления о глубинных процессах, отвечающих за распознавание речи в нашем мозге, так что делать какие-то выводы о качестве систем распознавания мы можем лишь потому, что есть задачи, которые им совсем не под силу. А не под силу им вот что: