Моделирование рассуждений. Опыт анализа мыслительных актов | страница 41



В качестве элементов множества Т будут выступать элементарные высказывания, обозначаемые малыми латинскими буквами. Считать или не считать некоторое высказывание элементарным, зависит от нашей воли. Как станет ясно из дальнейшего, этот вопрос не имеет принципиального значения в рамках той дедуктивной системы, которую мы строим. Для описания процедур построения производных высказываний из элементарных, т.е. синтаксических, правил надо предварительно ввести знаки логических связок. В качестве таких связок будут выступать уже известные по первой главе конъюнкция, дизъюнкция и отрицание, которые будем обозначать &, и (иногда заменяя, как и ранее, этот последний знак чертой сверху буквы, соответствующей элементарному высказыванию), а также новая связка, называемая импликацией, которую будем обозначать .

Сформулируем теперь совокупность синтаксических правил для исчисления высказываний.

1. Всякое элементарное высказывание является правильной совокупностью (будем говорить далее правильной формулой).

2. Если ? и ? являются правильными формулами, то правильными формулами являются также ?, (?&?), (??) и (??).

3. Других правильных формул в исчислении высказываний нет.

Между знаками логических связок

, &, и
и конструкциями естественного языка существует некоторая связь, которую проиллюстрируем на примерах. Воспользуемся стихотворением Давида Самойлова «Пестель, поэт и Анна». Вот его начало:

Там Анна пела с самого утра
И что-то шила или вышивала.
И песня, долетая со двора,
Ему невольно сердце волновала.

В этом четверостишии можно выделить четыре элементарных высказывания: a – «Там Анна пела с самого утра», b – «Что-то (Анна) шила», с – «Что-то (Анна) вышивала», d – «Песня, долетая со двора, ему невольно сердце волновала». В скобках мы ввели субъект, отсутствующий во второй строке приведенного отрывка. Общая логическая структура всего четверостишия может быть описана следующим образом: (а И (b ИЛИ c) И d). Большими буквами мы выделили союзы, которые в явной форме присутствуют в тексте Д. Самойлова. Можно ли от этой записи перейти к логическим связкам?

Вспомним, что такое конъюнкция и дизъюнкция. Во второй главе, определяя эти связки, мы говорили, что ?&? является истинным, если истинны оба утверждения ? и ?, а ?

? является истинным, если истинно хотя бы одно из утверждений ? или ?. Такое определение связок позволяет перейти от структуры, в которой используются союзы И и ИЛИ, к записи ((